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Abstract

A Mobile Crowd Sourcing (MCS) platform outsources sensing tasks to numerous mobile

worker devices. The collected data is analyzed and processed information is shared among

many other interested users. The platform pays to the workers for sensing data and earns

money from the users receiving processed information services. Distributing the sensing

workloads among the potential workers so as to maintain required data quality and to

make a reasonable amount of profit is a challenging problem for an MCS platform.

In this thesis, we develop a workload allocation policy, namely PQ-Trade system, that

analyzes the boundary performances and makes a reasonable trade-off between worker

utility and platform profit. The PQ-Trade system quantifies the utility (i.e., quality of

the sensed data) of a worker as a function of worker mobility, current location and past

sensing records. The workload allocation problem is formulated as a multi-objective non-

linear programming (MONLP) problem which aims to make desired trade-off between the

worker utility and platform profit. The allocation problem is shown to be NP-hard and

thus we develop two greedy algorithms with relaxed constraints to achieve near-optimal

solutions.

Performance of the proposed workload allocation policy is evaluated in a distributed

computation environment using MATLAB. The results show the effectiveness of the

proposed system compared to state-of-the-art-works in terms of platform profit, utility

of the workers and request service satisfaction.
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Chapter 1

Introduction

1.1 Introduction

The rapid growth of mobile computing devices, such as smartphones and tablet com-

puters equiped with embedded sensors (e.g., Global Positioning System (GPS), Camera,

etc.) [1] and seamless Internet connectivity through Wi-Fi/3G/4G/LTE interfaces, has

facilitated development of Mobile Crowdsourcing Systems (MCSs). An MCS is a dis-

tributed computing system that outsources sensing tasks to numerous mobile devices for

collecting ubiquitous data to a central system and for sharing analyzed and processed

information among many other potential users. Emerging applications of MCS includes

environmental monitoring, social networking, health care and transportation safety, etc.

[1]). For example, a groups of researchers from University of California at Los Angeles

(UCLA) developed PIER (Personal Environmental Impact Report) system [2], which uses

location data sampled from mobile phones everyday to calculate personalized estimates of

environmental impact and exposure; Nericell [3] and VTrack [4] provide real-time traffic

information; and, www.sensory.com offers free access to 100 community-powered cover-

age maps for various wireless networks (3G/4G/WiFi). In these applications, data are

collected from devices using a free application; more mobile phone sensing applications

can be found in [1], [5], [6], [7].

As shown in Fig. 1.1, an MCS system typically consists of a cloud platform (P ), data

requesting (R) devices and worker (W ) devices [8], [9]. The platform P is a cloud service

1
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Figure 1.1: A mobile crowdsourcing system

provider that recruits worker devices (Ws) to sense and send data; the collected data

are then processed at the platform and summary information on designated sensing and

monitoring tasks are then delivered to Rs. The platform charges money from Rs for the

delivered services and pays to W s for performing sensing tasks.

The success of such a system greatly relies on the quality of data sensed by worker

devices. Ensuring quality of sensed data in practical MCS systems is critical since it

requires selection of worker devices offering higher utilities. The selection problem is

further intensified due to mobility of worker devices and their service qualities in pre-

vious stages, especially for location-aware MCS applications. However, when a worker

device performs sensing tasks, it incurs some costs such as power consumption for diving

sensors, CPU utilization, etc[10]. Workers with higher utilities might claim more costs
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for rendering quality services. As a result, the profit of the platform may be reduced

for ensuring better services. Thus, a balance between the quality of sensed data and the

platform profit is required to maintain MCS ecosystem.

1.2 Motivation

Nowadays the proliferation of embedded technology results in the rapid growth of mobile

devices such as smartphones, tablets, smart watches, etc. For mobility support these

devices can be used as a portable computer for undertaking heavy computational tasks.

Moreover, these devices come with a set of embedded sensors like Global Position System

(GPS), accelerometers, cameras, etc., which enables sensing in diverse domains. On the

other hand, the utilization of mobile devices is ubiquitous. According to studies [11], [12],

almost 77 % of adults own a smartphone and 51 % of adults own a tablet in America as of

November 2016. All the above conditions along with the advancement of mobile Internet

and social networking technologies have facilitated the scope of crowd-problem solving

using mobile devices and the traditional Internet Crowdsourcing has evolved into a new

paradigm, i.e., Mobile Crowdsourcing (MCS). MCS involves the increasing number of

mobile devices with high computational and sensing resources to perform crowdsourcing

tasks. Different from the Internet crowdsourcing, mobile crowdsourcing leverages both

sensory data from mobile devices (offline community) and user-contributed data from

mobile social networking services (online community). Moreover, MCS extends user

participation in crowdsourcing tasks from explicit participation to implicit participation.

As a result, a number of crowdsourcing tasks that were previously difficult to complete

in Internet crowdsourcing have now become feasible, e.g., monitoring pollution level or

noise level at the city-scale, predicting the arrival time of vehicles, collecting the truth

happenings after a disaster, etc. Meanwhile, mobile crowdsourcing also brings a number

of challenges such as designing efficient framework to support MCS, allocating sensing
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task to workers considering their spatial and temporal availability, ensuring the quality

and accuracy (e.g., sensing quality, coverage quality, etc.), designing incentive mechanism

to motivate MCS participants, evaluating and recording participants past sensing records,

considering the profit of the provider, trade-off issues (e.g., trade-off between profit and

quality). As a result, MCS has drawn the attention of the researchers as an emerging field.

Moreover, challenges available in MCS have also fascinated the application developers to

concentrate on developing new crowdsourcing applications.

1.3 Crowdsourcing

As illustrated in Fig. 1.2, crowdsourcing is the practice of engaging a large group or crowd

especially from an online community for obtaining services or contents - often innovation,

problem solving, or efficiency. In [13], crowdsourcing is defined as a distributed problem

solving model which engages a undefined size of crowd through a open call. The term

crowdsourcing was coined by [14] as a form of ”peer production” that outsources works

to a large group of people. Crowdsourcing provides a way to solve the problems which

human can solve easily but difficult to computer. As a result, soliciting the solution of

various tasks using online labor markets has increasing become popular in recent years.
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Figure 1.2: Main participants and abstract data flow in a crowdsoucing system

1.4 Mobile Crowdsourcing

Crowdsourcing has still not fully penetrated in mobile workspace; However Nowadays,

smartphones are ubiquitous and widely used around the world with embedded sensors

(e.g., GPS, accelerometer, camera etc.) and has seamless Internet connectivity (e.g.,

Wi-Fi, cellular, etc.). This trend enables individuals to sense, collect, process and dis-

tribute data around people at any time and place. Naturally, The mixing smartphone

based mobile technologies and crowdsourcing offers vast resources of computation, and

leads to a new paradigm called Mobile Crowdsourcing (MCS). Smartphones offer a great

platform for extending existing Web-based crowdsourcing applications to a larger con-

tributing crowd, making contribution easier and omnipresent. Furthermore, smartphones
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multisensing capabilities including geolocation, light, movement, and audio and visual

sensors offer a variety of new, efficient ways to opportunistically collect data, enabling

new crowdsourcing applications. A general architecture of MCS system is shown in Fig.

1.3.

RSUs Cellular Base 

Station
WiFi APs

Wearable Devices Smart Vehicles Smartphone Users

Laptop Users

Computing Crowd

Sensing Crowd

Request

Results

End Users

Service Provider

Figure 1.3: A General Architecture of MCS system

1.4.1 Entities in a MCS system

Generally, a MCS system includes three basic entities: service provider, end users and

the crowd (sensing crowd and computing crowd) [15].

Service provider, also known as crowdsoucer, crowdsoucing platform or cloud plat-

form provides crowdsoucing services to both end users and public cloud. Service provider
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receives service requests from the end users and partitions these task into small subtasks

which can be crowdsourced. Tasks are then crowdsourced among the crowd, results are

collected and processed information is provided to the end users. In some cases, service

provider is only responsible for publishing tasks to the crowd while other processing are

done by the requesting end users. Fig. 1.4 illustrates deferent functional components of

the service provider. The requested task is first decomposed by the task decomposition

component and then distributed among the crowd by the task distributor. After collecting

the results final processing on the results is done by the task recomposition component.

Task recommendation components takes care of users preferences and recommend tasks

accordingly.

Task 

Decomposition

Task 

Recomposition

Task 

Recommendation

Task 

Distribution
Storage

Sensing Local Storage Communication Preprocessing

CommunicationLocal StorageComputing Sensing

Communication Local Storage
Task 

Recomposition

Task 

Decomposition

Service Provider

Sensing Participant

Computing Participant

Service Provider

Figure 1.4: Component of each entity of a MCS system

End users are the customers who purchase crowdsourcing services at certain cost.

They submit service requests to the service provider and get the results from it. In some

cases, the end users may decompose and recompose the tasks by themselves and rely only

on service provider for crowdsoucing their taks.
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The crowd is a group of mobile users who accepts and participate crowdsourced

tasks. The crowd can be broadly divided into two major types according to the type

of tasks performed by them - the sensing crowd and the computing crowd. The sensing

crowd includes a group of mobile users who performs crowsourced sensing tasks. On

the other hand, the computing crowd involves the group of users in computing task.

Fig. 1.4 illustrate components of both the sensing crowd and the computing crowd.

Both of them include communication component which facilitates communication with

the provider using cellular networks, WiFi, Bluetooth, NFC, and others. The sensing

crowd optionally have the preprocessing component but exclude computing component.

Similarly, the computing crowd optionally includes sensing component.

1.4.2 MCS Framework

A generic mobile crowdsourcing framework is proposed in [13]. As shown in Fig. 1.5,

this framework consists of multiple functional modules that are independent of specific

applications and can accommodate multi-modal data sources. We explain each module

in detail as follows:

� Task management module characterizes the sensing specifications and use cases,

including the types of participants, the required sampling rate for each type of

sensors, the requirements of data visualization and representation, etc.

� Mobile crowdsourcing frontend module provides crowd (participants) with a cross-

platform user interface for reporting crowdsourced data in participatory and/or

opportunistic ways.

� Crowdsourcer module publishes the appropriate tasks to platform through inter-

acting with task management module; provide quality feedback about the sensed

contents offered by crowd; and pay the crowd for participating in crowdsourcing

tasks.
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Figure 1.5: A generalize framework of MCS system

� Incentive engine generally stimulates crowd to actively participate and contribute

high quality data and encourage crowdsourcers to provide truthful feedback about

the quality of crowdsourcing data. It may reward/punish crowd and crowdsourcers

with monetary, ethical, entertainment, and priority, etc., based on their behaviors.

� Identity and reputation management module manages the identities of participants

and crowdsourcers, build reputation for them based on their past behaviors so as

to enhance the quality of sensed data provided by crowd and trustworthiness of

feedbacks by crowdsourcers.

� Knowledge discovery module provides intelligent data processing capability to ex-

tract and re-construct useful information from the raw sensing data submitted by

participants.
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� Security and privacy module aims to protect user’s privacy, increase privacy aware-

ness of users and make application validated.

� Quality control module analyzes the feedback of quality information and adjusts

the parameters of the module other modules, to achieve a higher quality service.

� External datasets module allows sensing data from external datasets to be incor-

porated into the system to enrich the functionalities and services.

1.4.3 MCS Applications

Recent years have witnessed the proliferation of smarthphone based crowsourcing appli-

cations. According to [13], MCS applications can be divided into two categories: human

intelligence and human sensor. The category of human intelligence utilizes human wis-

dom (wisdom of crowd) to perform tasks that are easy for humans but remain difficult

for computers. Especially, mobile phones can reveal crowdsourcing’s full potential and

enable users to transparently contribute to complex and novel problem solving, such as

knowledge sharing, natural language processing, etc. On the other hand, the category of

human sensor incorporates the concept of ”human-as-a-sensor” into the mobile crowd-

sourcing system to collect human observations, in addition to sensor measurements from

mobile devices owned by the public crowd, for various services such as smart transporta-

tion, environment monitoring, etc.

A number of smartphone applications have been developed which use embedded sen-

sors of the smartphone and exploit advantages of either opportunistic sensing or collab-

orative sensing or both. Here we discuss some area of MCS application along with the

existing smartphone applications in these areas.
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1.4.3.1 Environment monitoring

For monitoring environment condition such as detecting noise level in a city, measur-

ing air pollution level, etc., mobile crowdsourcing can be used. Rajib Kumar Rana et

al. [5] presents the design, implementation and performance evaluation of an end-to-end

participatory urban noise mapping system called Ear-Phone. The key idea is to crowd-

source the collection of environmental data in urban spaces to people, who carry smart

phones equipped with sensors and location-providing Global Positioning System (GPS)

receivers. Similarly NoiseTube [16] constructions fine-grained noise maps using uploaded

data captured by users smartphone microphones. PIER (Personal Environment Impact

Report) [2], developed by a groups of researchers from University of California at Los

Angeles (UCLA), uses location data sampled from mobile phones everyday to calculate

personalized estimates of environmental impact and exposure.

1.4.3.2 Traffic monitoring and smart navigation

MCS applications can be used to update the traffic at the required location, provide

real time traffic information by displaying user-generated reports on traffic, construction,

and speed traps. Moreover, MCS applications facilitate planning route according to

weather conditions, accidents, and traffic jams. For example, [17] presents TrafficInfo, a

smart phone prototype application implementing a participatory sensing based live public

transport information service, which exploits the power of crowd to gather the required

data, share information and send feedback. TrafficInfo also visualizes the actual position

of public transport vehicles with live updates on a map, and gives support to crowd

sourced data collection and passenger feedback. Nericell [3] and VTrack [4] provide real

time traffic information such as road-traffic delay estimation. PotHole [18] helps users to

identify holes of the streets by sharing their location and vibration data captured by the

smartphone. NeviTweets [19] allows user to generate and share geo-tagged image traffic

report. Based on these reports, Traffic Digest are delivered to driver to provide reliable
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information supporting the route choice. TeleEye [20] helps user to inquire information

regarding location. User will get the answer through other user at the inquired location.

1.4.3.3 Smart parking and smart traffic light

MCS applications enable monitoring of parking space availability in the city and rec-

ommend with charges. For example, Advanced services smart parking [21] helps users

to search available parking space closest to their intended destination. Real time traffic

load and emerging events can be monitored using crowdsourcing data and these informa-

tion can be used to control traffic lights. SignalGuru [22] provide advisory services for

collaborative traffic light scheduling.

1.4.3.4 Health monitoring and disease diagnosis

Health status information such as heart rate, electrocardiography, blood pressure, etc,

are collected using MCS application. These personal health parameters are then used

to diagnosis different diseases. MCS application also facilitates food recommendation

according to health conditions of a user. MCS data can also be used to monitor the

water quality and study its eligibility for drinking.

1.4.3.5 Weather monitoring and hazard management

FloodPatrol [23] aims at contributing to flood monitoring and public awareness by al-

lowing the crowd (user) to report the flood levels in various locations. Hazard Reporting

[24] allows users to record hazard whenever they found one and uploading them to a

server which enable municipalities could collaborate with utility companies in fixing such

hazards in timely manners.
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1.4.3.6 Disaster reporting

Project Jagriti [25] helps people make a report of child abuse. The reports are forwarded

to the Child Welfare Committee. iShake [26] enables users to report ground motion

measurements from a mobile device to a centralized data-collection-system when the

mobile devices are triggered by a shaking event. CrowdHelp [27] helps user by displaying

on the map with suggestion on type of help that is most needed. User within the radius

of a natural disaster are able to send text, pictures, videos, locations, and descriptions of

what they see.

1.4.3.7 Social networking

crowdSMILE [28] is a Crowdsourcing-based Social and Mobile integrated system for

learning by exploration. Users can access location-based learning content anytime and

anywhere. One of the most fundamental parts of the linguistic pipeline is part-of-speech

tagging (POS), a basic form of syntactic analysis which has many applications in natural

language processing. A special mobile crowdsourcing system [29] is proposed to address

the problem of POS for English data from the popular micro bogging service Twitter.

1.4.3.8 Making 3D models

Mobile 3D Modeler [30] allows users to create, submit and vote 3D models of building

components. Helps user to build a 3D model of the internal structure of a building.

IndorCrowd [31] helps indoor 3D maps reconstructions. Users can help by capturing

their preference indoor environment and uploading key frame to the cloud, along with

real time sensory data and labeling information.

1.4.3.9 Other MCS applications

Jeffrey P. Bigham et al. [32] presents VizWiz, a project aimed at enabling blind people

to recruit remote sighted workers to help them with visual problems in nearly real-time.
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Blind people can use VizWiz on their existing camera phones: take a picture with their

phone, speak a question, and then receive multiple spoken answers. Librorium [33] is a

fully informational dictionary with accurate definitions, ratings, and example for every

Filipino and English words. Allows user and expert can interact with each other. UbiAsk

[34] provides translation services. User can upload an image containing different language.

The other users that know the language will response to the image. AirPlace [35] provides

real-time fine grained indoor localization services that exploit the radio signal strength

of Wi-Fi access points.

1.5 MCS Challenges and the Scope of the Work

Most of the existing MCS applications rely on user’s voluntary contribution. However,

while participating in crowdsourcing sensing tasks a mobile user consumes it’s own re-

sources (e.g., battery, cellular data, memory). Thus incentive mechanisms are required

to motivate users to participate in MCS system. However, it is extremely challenging

to select high utility workers from the participants as they may be dishonest, selfish,

erroneous or even malicious. The selection problem becomes further intensive due to

worker mobility and location information. The platform should also make enough profit

to get incentive to run MCS application in the long run. These issues make the MCS as

an promising research area. Some of the challenges of MCS is listed below:

� Task management: Task design is the model under which the requester prescribes

his or her task. It is an important requirement as tasks are heterogeneous in terms

of required sensing service, task location, etc,. Factors that contribute to quality

of task includes task definition, user interface, and granularity, etc,.

� Provide incentive for the participants: An incentive is a kind of stimulus or en-

couragement to stimulate one to take action, and work harder, etc. This issue is

even more critical when the devices (e.g., mobile phones, wearable sensors) have
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very limited resources (e.g., energy and storage capacity). Thus lucrative incentive

mechanism is required to attract the users to participate in crowsourcing tasks. For

example, the MCS system can reward the participants for contributing with high

quality data.

� Sensing quality control: MCS system should be able to assess the quality of data

sensed by the workers. As the quality sensing service depends on high quality data

send by the workers, the MCS system should select hight utility workers to ren-

der quality services. Sensing quality varies depending on application requirements

including quality of the sensor, coverage quality, etc. MCS should also be able to

record workers past sensing reputations and treat the workers accordingly.

� User’s spacial and temporal availability: Mobile users accept crowdsourced tasks

based on their interests, locations, or device conditions (residual battery, available

sensors, etc.). The network topology also changes over time due to human mobility

and dynamic user join/leave. Thus workers spacial and temporal availability should

be incorporated in the mechanism design.

� Profit-aware mechanism: MCS system should be profitable for both the participants

and the provider. Without enough profit they will lose their motivation to put

enough contribution in MCS system.

1.6 Problem Statement

Most of the research works on MCS system focus on designing incentive mechanisms

to ensure participation of the users in crowdsoucing system. Some works incorporated

worker utility (i.e., sensing quality) and tried to maximize the total utilities of the se-

lected workers. SACRM [36] quantified worker utility as a function of required task

completion delay, past sensing reputation and worker preferences. ABSee [37] measures
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sensing quality as the deviation of data qualities sensed previously by the selected work-

ers. However, the main challenge in MCS is to recruit workers for distributing sensing

workloads among them, since the system is highly dynamic due to the mobility of the

workers and completion of sensing tasks are not guaranteed for the temporal and spatial

availability of the worker and tasks have explicit delay deadline before which requesters

must be served. Task heterogeneity in terms of task’s Area of Interest (AOI), required

sensing resources, etc., makes the problem further intensive. On the other hand, crowd

platform aims to maximize its profit from the crowdsourcing system. A few of literature

works concentrate on maximizing the profit of the platform while developing worker se-

lection strategies [9], [38], [39]. However, profit of the platform depends on the claimed

cost of workers for performing sensing task and market value of the corresponding sens-

ing service. The claimed cost of a worker can’t be known in advance and market value

estimation requires extensive market analysis and learning. Thus incorporating profit in

MCS mechanism design introduces another challenge.

None of the existing workers consider the platform profit and the sensing quality

jointly while developing MCS system. As these two metrics are crucial for proving

longterm high quality sensing services it requires making a balance between these two.

Trade-off mechanism should also be adaptive with changing environment while ensuring

the marginal requirements of each of the two metrics. In this thesis, we try to answer

the following three questions.

� How to maximize quality of sensed data while fixing a profit margin of the platform?

� How to maximize profit of a platform while keeping the required quality of sensed

data for MCS applications?

� How to make a reasonable trade-off in between the above two performance metrics?
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1.7 Solution Methodology

In Fig. 1.6 we present the abstract view of our proposed solution methodology. In

this work, we have proposed a framework for the cloud platform which is applicable for

any kind of MCS applications. we design different modules responsible for performing

different functionalities and define the interactions among them.

Our proposed model takes heterogeneous task requests from the service requesters

and define workload of tasks. Then tasks are advertised to the crowd. After receiving

bids from the workers, our model calculates profit of the provider and expected utility

of the worker’s bid for the tasks. Then our model selects the most suitable workers

according to the strategies of the platform. After that workers contribution is evaluated

and reward are given accordingly.

1.8 Thesis Contributions

In this work we investigate the problem of fundamental tradeoff between the quality of

sensed data and the platform profit, named as PQ-Trade for location aware MCS appli-

cations. We quantify quality of sensed data using a worker’s utility, which is expressed as

a function of it’s mobility, distance from the centre location of the application task and

quality of past sensing responsibilities. On the other side, profit of a platform for each

sensing task is the difference of the amount it receives from the data requesters and the

amount it pays to the sensing worker devices. The proposed PQ-Trade system optimaly

selects workers to make a good balance between worker utility and platform profit. The

main contributions of this paper are itemized as follows:

� We develop a utility function for a worker based on its mobility, current location

and past reputation.

� Multi- Objective Nonliner Programming (MONLP) objective function (with nec-
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Figure 1.6: Architecture of proposed system

essary constraints) has been formulated for selecting worker devices to make a

reasonable balance between platform profit and their utilities.

� Due to NP-hardness of the MONLP-based optimal solution, we then develop first-

fit greedy algorithms either to maximize utility or profit while keeping the other

one at a desired level.

� A payment policy for the selected worker devices has been developed following the

quality of sensing data.

� We implement the proposed system using MATLAB and compare with the state-
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of-the-art works.

1.9 Organization of the Thesis

The rest of the report is organized as follows. The state-of-the-art works on worker

selection in MCS have been described in details in chapter 2. The limitations of the

existing works are also specified here. In chapter 3, the assumptions, notations and

the proposed PQ-Trade system has been demonstrated.The performance evaluation of

our proposed task scheduling model compared to the sate-of-the-art works has been

demonstrated in chapter 4. In chapter 5, conclusion along with the directions for future

research has been outlined.



Chapter 2

State-of-the-art Works

In this chapter, we overview the necessary backgrounds on MCS system and their design

principle. Some state-of-the-art research works are described in detail. Furthermore, we

focus on the motivations that lead us to develop a novel architecture model and worker

recruitment and sensing workload allocation framework for MCS system.

2.1 Introduction

Recently, as an emerging field of information collection mechanism MCS sensing crowd-

sourcing in mobile has been studied extensively by the research communities. Today

smartphones are the core communication decives in people’s everyday life. Issues relat-

ing both MCS systems and MCS applications design have drawn equal attention in the

literature. A number of the state-of-the-art works focused on designing practical MCS

systems. For the selecting suitable workers for crowdsourcing tasks among them. Most

of related works focuses on designing incentive mechanism to stimulate smartphone users

to participate in crowdsourcing tasks. In a practical crowdsourcing system, thousands

workers may coexist. They are also heterogeneous in terms of their social attributes (i.e.,

location, mobility, etc.), sensing and computing resources, etc. On the hand, service

requesters also have heterogeneous task demands in terms of required sensing or com-

putational services, service location, deadline, budget, etc. Thus selecting a suitable set

of workers and allocating sensing workloads is a critical one in such a dynamic environ-

20
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ment introduced a crucial problem. The selection problem is further intensified due to

users spacial and temporal availability, sensing quality, reputation of users past sensing

responsibilities, platform’s profit from the crowdsourcing system,etc. A good number of

literature works can be found which consider either quality of sensed data or profit of

the crowdsoucing platform. However, none of the existing works focuses on the trade-off

issues of these two parameters. Moreover, evaluating sensing reports, managing users

reputation accordingly and making adaptive payment policy have got less importance in

the literature.

In this chapter, we first discuss existing research works related to MCS system design

and application developments. Then we extend our study on the existing works which

incorporate platform profit, sensing quality and adaptive payment policy into their design.

Finally we conclude this chapter discussing the uniqueness of our work.

2.2 MCS System and Application Design

A crowdsourcing system mainly consists of a crowd platform, service requester and the

crowd. On arrival of requests from service requesters or customers, a MCS platform out-

sources the sensing tasks among the crowd (a group of users who participate in crowd-

sourcing tasks) by an open call. The crowd performs assigned tasks and sensing or

computational results are sent to the platform. The platform then provide the customers

required services. To manage the interaction among the these entities and enhancing

the quality MCS services, works have been done proposing sustainable architecture MCS

design. In [15], a generalized architecture of a MCS system. The functional components

of each entity along with functionalities have been presented in detail. Authors in [13]

proposed a generic framework for MCS system and application design along with the

challenges. An extensive study on the current state of crowdsoucing applications that

exist today, in done. According to the study MCS has gain popularity both in research
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community and industry.

A number of MCS applications in specific fields can be found in the literature includ-

ing traffic and navigation [17], [4], [3], [19], [20], environment monitoring [2], weather

monitoring [23], disaster management [25], [26], [27], social networking [28], etc. More

crowdsoucing applications in different fields can be found in [22], [24], [29], [30], [31],

[32], [33], [35]. However, most of them considered the sensing tasks as a volunteer ser-

vice. User participates in crowdsourcing tasks without any payment or reward which is

not viable in a practical crowsoucing application.

2.3 Incentive Mechanisms Design for MCS System

While participating in crowdsourcing tasks smartphone users incur some cost such as

power consumption for driving sensors and CPU utilization, bandwidth cost for commu-

nicating with platform and submitting sensing task. As a result, MCS system should

ensure enough compensation in monetary or other form to stimulate workers. On the

other hand, a adaptive rewarding polity is required to encourage workers with good

contribution and discourage dishonest workers with penalty. Thus designing incentive

mechanism with lucrative payment policy is one of important consideration while design-

ing MCS systems and applications.

Several incentive mechanisms have been widely studied in the literature [8], [9], [39],

[40], [41], [42], [43], [44], [45]. Most of them exploit dynamic pricing to give incentive

to the participants. Auction theory (mainly reverse auction) is used to achieve the

properties of truthfulness, individual rationality and computational efficiency in selecting

crowdsourcing workers [8], [42], [44], [46], [47]. The auction theory ensures truthfulness

and individual rationality of the workers. Truthfulness is required to encourage user

biding with their real cost. Individual rationality is required to give incentive to the

worker for good contribution.
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Yang et. al. [9] proposed two incentive mechanisms called MSensing for a user-centric

and a platform centric model, respectively. For platform centric model, a Stackleberg

game based incentive mechanism has been designed. In MSensing, each user decides the

amount of time it would like to spend in sensing tasks and gets its proportionate amount

from the declared total reward. On the other hand, for user centric model, an auction

based truthful mechanism has been proposed which assigns sensing tasks to the users

using a greedy-based heuristic approach. However, in MSensing, a user can only submit

a single bid, thus it fails to make the best use of multi-sensing capabilities of users.

TRAC [8] is a truthful auction mechanism for location-aware sensing in MCS. In

TRAC, the platform assigns sensing tasks with a goal to minimize social cost of the

selected users. A user bids for a subset of sensing tasks if it is within the Area of In-

terest (AOI) of those tasks. TRAC platform then sorts tasks based on minimum cost

per unit task and greedily assigns tasks to the workers. A critical payment based pay-

ment mechanism has also been proposed to pay the workers according to their marginal

contributions. However, TRAC does not consider the profit of the platform which is a

must for sustainability of a crowdsourcing platform. TRAC also assumes that, there are

sufficient worker for alternate bidding combinations thus all the crowdsourced tasks can

be surely assigned which is unrealistic in a practical application scenario.

A truthful incentive mechanism has also been proposed in [46] to minimize the social

cost of the crowdsourcing workers. Two different working patterns of a task have been

considered: continuous and discontinuous. In continuous working pattern, workers can

only bids for subtasks in continuous time slots. For this kind of patterns, a Vickrey-

Clarke-Groves (VCG)-based auction mechanism is proposed and worker selection and

task allocation problem is solved using a dynamic programming solution. A suboptimal

auction mechanism is introduced for the discontinuous patterns which selects workers

according to minimum bidding cost using a greedy sorting based mechanism with a aim

to minimize the social cost. The Platform also pays the selected workers according to
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the critical payment mechanism of auction theory. However, the worker selection and

task allocation mechanism is run only for one task in each round thus it fails to serve

heterogeneous task requests from the users. Moreover, platform overlooks workers spatial

and temporal availability as well as the quality of the data sensed by them.

2.4 Profit Aware MCS Systems

Although several auction mechanisms have been proposed for MCS system, most of them

do not consider the profit of the mobile crowdsourcing system (e.g., [8], [46], [44], [45]

). However, profit is crucial especially the profit of the MCS platform for designing a

sustainable mobile crowdsourcing system. It gives incentive to the platform for running

MCS application. In literature, there are few works which try to incorporate profit of

the crowdsourcing system into their design [9], [39], [38].

In Msensing [9], tasks are assigned gradually to smartphone users by a greedy-based

heuristic approach with a aim to maximize the profit of the platform. However, profit is

sacrificed for the sake of computational efficiency of the system. In [38], Koutsopoulos

designs an optimal incentive mechanism to maximize the profit of the platform. How-

ever, the winner determination problem is NP-hard and cannot allocate the tasks in a

computationally efficient manner.

PROMOT [39] is a reverse auction based incentive mechanism that outperforms the

profit of MSensing. In PROMOT, each task has some positive value (i.e., the market

price of the sensing services) and platform profit is calculated as the difference between

this value and the bidding cost of the workers. PROMOT winner determination problem

is formulated as an Integer Linear Programming (ILP) problem and due to NP-Hardness

of ILP problem, it is converted to a Linear Programming (LP) problem. Based on the

solution obtained from LP problem, users are selected greedily to maximize the profit of

the platform. However, PROMOT platform does not consider the utility of the recruited



2.5 QUALITY OF SENSING AWARE MCS SYSTEMS 25

workers (i.e., sensing quality of the service). PROMOT platform also overlooks crucial

quality parameters of a worker such as worker’s current location, mobility, past sensing

reputation, etc. In some works mechanism is proposed for mobile crowdsourcing while

a limited budget is assigned for sensing tasks and platform performs a subset of tasks

according to its budget constraint [48], [48], [49].

2.5 Quality of Sensing Aware MCS Systems

Quality of sensing is also linked to a few existing incentive mechanisms [38], [50], [49],

[51], [52], [37], [36]. Koutsopoulos [38] proposed an incentive mechanism which considers

the quality of sensing. However, the platform does not have a budget constraint and

only has one task. In [50], an auction mechanism is designed to maximize the platform’s

valuation where quality of sensing of each user is assumed to be known by the platform.

A sequential Bayesian approach is used in [49] to determine the quality of sensing of

users, but they assume that quality of sensing is previously known and tasks have only

binary values. In [51], a quality-aware algorithm is proposed only considers the coverage

quality. A quality-based incentive mechanism is designed in [52]. However, it does not

consider the strategic behavior of users.

ABSee [37] is a quality of sensing aware budget feasible mechanism which introduced

quality indicator to estimate the sensing quality of the users under a budget constraint.

In ABSee, truth value of the sensed data is estimated using truth discovery methods

proposed in [53] and the quality indicator is calculated from the deviation of sensed data

from the truth value. Then previously stored quality indicator is updated using EWMA

and new value is stored. This value is used as an quality indicator in the next worker

selection round. However, ABsee only considers the quality of sensing based on work-

ers past sensing accuracy while critical quality parameters such as workers location and

mobility information are not considered. ABSee also runs worker selection algorithm



2.6 DATA ASSESSMENT AND REPUTATION MANAGEMENT 26

within limited budget. In [54], a recruitment framework is developed to enable the data

requester to identify well-suited participants based on geographic and temporal avail-

ability which approximately maximizes the coverage over a specific area and time period

under a limited campaign budget with a greedy algorithm. A recruitment framework is

also propose in [55] to select suitable participants in the friend circle by the multi-hop

friendship relations. However, none of them consider the social preferences of mobile

users and adaptive rewards allocation.

SACRM [36] addressed the quality of sensed data by measuring utility of a worker

which is a function of task completion delay, reputation of the past sensing responsibilities

and overlap between social attributes of the workers and the tasks. SACRM allows the

requesters to select a subset of users to maximize the total utility of selected users under

a budget constraint. It also evaluates the quality of sensed data and provide payment

to the selected workers accordingly. Worker’s performance is recorded as the reputation

value in a reputation database which is incorporated in the worker selection decision

in the next round. Though SACRM considers some quality parameters of the workers,

it overlooks worker mobility and current location information which is important for

designing a location aware crowdsourcing application. In SACRM, platform only stores

worker reputation information and facilitated interactions among the requester and the

workers where task allocation and payment decision is entirely taken by the requesters.

Another limitations of SACRM is that, the requester can run task allocation algorithm

for only one task at a time which results in under utilization of worker’s sensing resources.

2.6 Data Assessment and Reputation Management

Another challenge in MCS system design is sensed data assessment and worker’s rep-

utation management as well as evaluating the trustworthiness of the sensing data and

mobile users. Some literature works introduce these issues in designing MCS systems
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[36], [37], [56], [57], [58]. In [56], a robust trajectory estimation strategy named TrMCD

is developed to alleviate the negative influence of abnormal crowdsourced users. A rep-

utation framework for social participatory sensing is proposed in [59]. Huang et al. [60]

employ the Gompertz function [61] to compute the device reputation score and evaluate

the trustworthiness of the contributed data. SACRM [36] and ABSee [37] use existing

truth discovery methods [53] taken from data mining. Privacy issues are also highlighted

in the reputation system design of mobile sensing in some of the existing works [57], [58],

[59].

2.7 Discussion

Most of the existing works focus on developing incentive mechanisms to stimulate smart-

phone user to participate in crowdsourcing tasks. However, many real time MCS ap-

plications demand high quality and accurate data from the MCS system. To sustain in

the market a MCS platform should render high quality services which relies on selecting

high utility workers. However, high utility workers demand high monetary reward for

engaging their resources in sensing tasks. As a result, the platform losses its incentive

due to poor profit made from the crowdsourcing system. Though some literature works

considered profit of the MCS system, profit is sacrificed for the shake of computational

efficiency. Moreover, data quality is overlooked for higher profit. A number of workers

linked sensing quality to their design. However, most of them don’t consider the spacial

and temporal availability or past sensing reputations of the workers which are crucial for

providing high quality services to the customers.

None of the existing works jointly consider the platform profit and worker utility

while designing MCS systems. Therefore, we have design a worker recruitment and task

allocation framework for MCS namely PQ-Trade which considers worker spacial and

temporal availability to quantify the utility of the worker. Then PQ-trade formulates
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a Multi-objective Non-linear Programming (MONLP) problem to make a reasonable

balance between the profit of the platform and utilities of the selected worker devices.

Finally, PQ-Trade develop two computationally efficient greedy solutions which aims at

maximizing either the profit of the platform or the quality of sensing while keeps the

other one in a marginal level.

To best of our knowledge, proposed PQ-Trade system is the first one in the area of

MCS that has considered the trade-off between the platform profit and the worker utility

(i.e., quality of data sensed by them). Moreover, we have carried out the boundary

performance analysis for sensing quality and platform profit.

A comparative study among different worker selection mechanisms in MCS discussed

earlier is presented in Table 2.1.

Table 2.1: Comparison Among MCS Systems

MCS

system

Platform

profit

Sensing

quality

Location

awareness

Worker

mobility

Worker

reputation

Profit

quality

trade-off

M-Sense [9] Yes No No No No No

TRAC [8] No No Yes No No No

PROMOT[39] Yes No No No No No

MSC [46] No No No No No No

SACRM [36] No Yes No No Yes No

PQ-Trade Yes Yes Yes Yes Yes Yes
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2.8 Summary

In this chapter, we have discussed some of the recent noteworthy contributions in MCS

system focusing worker recruitment, workload allocation and sensing report assessment.

We studied their working principles and tried to alleviate their shortcomings using our

idea. As one of the major limitations of the existing mechanisms is ignoring trade-

off issues of platform profit and sensing quality, our proposed PQ-Trade mechanism

emphasizes on these fact during designing worker recruitment and workload allocation

mechanism. Finally, we have discussed the uniqueness and importance of our work in the

context of worker utility, platform profit and trade-off between these two. In the next

chapter we discuss our proposed PQ-Trade system in detail.



Chapter 3

Proposed PQ-Trade System Design

In this chapter, we present our proposed workload allocation policy namely PQ-Trade sys-

tem,in detail. We first discuss the system model and assumptions that have been considered

in our system. Then we go through the design components of the proposed system and de-

scribe the functionalities of each components in detail.

3.1 Introduction

In the previous chapter we have explored the existing worker selection and workload

allocation policies in MCS system. Due to the limitations of existing works and the

challenges to establish better worker recruitment and workload allocation policy with

necessary trade-off, it creates ample scope to do research on it. We have also seen that,

most of the existing workload allocation policies do not consider worker mobility informa-

tion or past sensing reputation. Thus we came up with an efficient workload allocation

policy namely PQ-Trade to make a reasonable trade-off between two aforementioned

parameters.

In this chapter, we first discuss the system model and assumptions that have been

considered in our work. After that, we unfold different design components of our proposed

system and finally we describe the work flow of our proposed workload allocation policy.

30
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3.2 System Model and Assumptions

In this section, we describe different entities in a typical MCS system and illustrate the

interactions among them.

3.2.1 Entities in Mobile Crowdsourcing System

We assume a crowdsourcing system consisting of three entities: a cloud Platform (P ),

data Requesters (Rs) and Worker devices (W s). The platform initiates sensing tasks

on reception of requests from customers (Rs) and then the tasks are being distributed

among a number of worker devices (W s) for execution.

Let T = {t1, t2, ..., tN} denotes the set of N sensing tasks submmited by Rs. Each

sensing task represents a specific service which has some value, Vt > 0 to the platform [39].

Each sensing task t ∈ T is characterized by a five parameter tuple < At, lt, rt, Dt,Wt >,

where, At specifies the desired sensing service, lt is the corresponding location from where

the sensing data should be collected, rt is the radius of tasks’ Area of Interest (AOI), Dt

is the time deadline and Wt is the workload of task t [62]. In PQ-Trade, platform divides

a task into a number of subtasks of uniform size. The total number of subtasks for a

particular task t defines workload of that task. For example, a task (e.g., environment

monitoring application) of taking a total of 10 pictures at a particular Point of Interest

(POI) and if uniform subtask is defined as taking 2 pictures at a time, then workload of

this task is 5. We also assume that AOI of a task is given by a circle with radius rt.
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Figure 3.1: System model of a typical MCS application

We assume a set M = {m1,m2, ...,mM} of worker devices that are interested to

perform sensing tasks assigned by the platform P . A worker m ∈ M can perform a

sensing task t if it is located within the radios of task’s circle. The location of the worker

can be extracted using GPS [63]. The lifetime of a worker in the AOI of a task depends

on its velocity and movement direction.

3.2.2 Interactions Among Entities

Figure 3.2 shows the interactions among Rs, P and W s and major events in one task

scheduling round. The events r1 - rN are sensing service requests from a number of data

requesters, Rs. On reception of such requests, the platform P advertises a sensing task

set, T among all the worker devices, denoted by the events a1 - aN . Each worker m ∈M

then bids for a subset of tasks (One bid for one task) in events b1 - bM and let Bm

denotes the set of all bids submitted by a worker m ∈M. Each bid, Γt
m is characterized

by a five parameter tuple < m, t, wt
m, c

t
m, d

t
m > (m ∈ M, t ∈ T ), where, wt

m is the
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offered workload, ctm is the claimed cost and dtm is the task completion delay. Each

worker, m ∈ M also send a maximum number, nmax
m of winning bids to the platform.

Though having heterogeneous sensors, a worker m may not complete all the tasks due

to its availability in the task’s AOI and deadline of the task which in turns decreases

the reputation of the worker. Thus it is rational that the numbers of winning bids of

worker m is limited by nmax
m . Let B = {B1 ∪B2 ∪ ... ∪BM} denotes the set of all bids

received by the platform. Platform then runs PQ-Trade worker selection method (to be

presented in Section 3.3.2) in event etrade and selects workers along with their winning

bids. Then the selected workers are notified about their winning bids in events s1 - sN .

Each worker then completes tasks in event esensing for which it has a winning bid. After

completion of esensing, sensed data are provided to the platform in events d1 - dW . The

platform provides services to Rs in events d1 - dN . Rs pay for the services in events p1 -

pN . In event epayment, P determines the payment of each worker considering the quality

of sensing data and calculate a payment vector. After completion of epayment, platform

finally pays the W s for their contribution in events p1 - pW . Service request events rN+1

- rN+3, which arrive after T1 waits until T2, starting of next scheduling round. The major

notations used to design PQ-Trade are listed in Table 1.
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Figure 3.2: Interactions among Rs, P and W s.

3.3 Design of PQ-Trade

In this section, we present the computational model of proposed PQ-Trade platform,

formulate optimal worker selection problem as a MONLP, develop two greedy first-fit

algorithms and a payment policy for worker devices.



3.3 DESIGN OF PQ-TRADE 35

Table 3.1: Notation Table

Symbol Meaning

T Set of tasks advertised by the platform P

lt Location of a task t ∈ T

rt Radius of task t’s AOI

Dt Delay deadline of task t ∈ T

Wt Total workload of task t ∈ T

Vt Value of task t ∈ T

M Set of available worker devices

lm Current location of worker m ∈M

Bm Set of bids sent by a worker m ∈M

wt
m Offered workload of task t from a worker m ∈M

ctm Claimed cost of worker m for a task t ∈ T

dtm Task completion delay for task t ∈ T , m ∈M

B′ Set of winning bids

L t
m Sojourn time of worker m in task t’s AOI

UM , UD, UQ Workers’ utility for mobility, location and

past sensing quality, respectively

U t
m Combined utility of worker m for task t

Vtm Monetary value of workers’ utility

Pt
m, ρ

t
m Platform total and normalized profit

for allocating task t to worker m

3.3.1 Computational Model of PQ-Trade Platform

Figure 3.3 shows the functional modules of our proposed PQ-Trade platform, where an

individual module is responsible to perform designated tasks, as presented below:
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Figure 3.3: Computational model of PQ-Trade platform

� Request receiver module delivers summary of the task specification sheets, re-

ceived from sensing service requesters Rs, to workload computation module. Each

task sheet contains specifications of desired sensing services (e.g., location, type of

sensing task, deadline of task, budget, etc.) [62].

� Workload computation module counts the number of unit subtasks in each task

t ∈ T to quantify its workload, Wt, as follows,

Wt =
Vt

St
, (3.1)

where, Vt is the task volume and St is the size of unit subtask for t. Recall that

each task t ∈ T is characterized by a five parameter tuple, stored in the task pool.

The tasks wait in the pool till the next scheduling round starts.

� Task advertisement module, at the start of a scheduling round, pulls the set of

available tasks, T , from task pool of workload computation module and advertises

the tasks to all worker devices, W s.
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� Bid receiver module, after advertisement of available tasks set, T among all the

worker devices, waits for a certain amount of time, Tbid and forward the received

bid set, B to worker mobility prediction module for further processing. Recall that

each bid from a worker m ∈ M is characterized by a five parameter tuple and a

worker can only submit one bid for each task t ∈ T .

� Worker mobility prediction module extracts the bid tuple, Γt
m of each worker-

task pair, (m, t) and calculates the sojourn time, L t
m of a workerm ∈M in the AOI

of task t ∈ T using its location information and predicted velocity. In PQ-Trade,

we exploit smooth random mobility model to calculate L t
m for a worker device that

can predict more accurately [64]. Finaly, this new parameter, L t
m is added with

each bid tuple, btm ∈ B.

� Worker selection module extracts the bid tuple, Γt
m of each (m, t) pair from

B, calculates worker’s mobility, distance and past sensing quality based utilities,

UM , UD and UQ, respectively and combines these to calculate the total utilities,

U t
m for each (m, t) pair discussed in section 3.3.2.1. Worker selection module then

calculates the corresponding profit, Pt
m and normalize profit, ρtm of the platform

and selects optimal workers, details are found in sections 3.3.2.2 and 3.3.3.

� Winning bid notifier module receives winning bids set, Bw from the worker

selection module and notifies the workers about their winning bids.

� Data receiver module collects sensing data from the selected worker devices, W s.

After being notified by the winning bid notifier module, each selected worker device

m ∈M performs sensing tasks and submits data to the data receiver module. Data

receiver stores the data into a data repository.

� QoS and reputation management module evaluates the quality of the sensed

data provided by the workers m ∈M using methods proposed in [37] and updates
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the standard deviation of sensing quality of the worker, qm. The platform maintains

a a database to record the qm value of past sensing responsibilities of a worker

devicesm ∈M. Whenever a new worker registers, the platform creates a new entry

in the database and gives the worker an initial quality value, qm which is updated

over time as tasks are assigned to the worker and sensing data are received by the

platform. The details of calculation of qm can be found in section, 3.3.2.1.

� Sensing service provider module provides processed data as services to the

requesters, Rs. Data are represented in application specific format (e.g., creates

WiFi coverage map, shows traffics in a map, etc.,).

� Payment receiver module charges money to data requesters, Rs for rendering

services and Rs pay to the platform according to their service demand.

� Payment management module calculates the payment of each selected worker

device m ∈M using PQ-Trade payment policy after evaluating the quality of their

sensing data and constructs a payment vector, P.

� Payment provider module pays each selected worker device m ∈ M according

to the calculated payment vector for their contributions.

3.3.2 Problem Formulation

In this section, we first quantify achievable utility, U t
m of a worker device m ∈ M for

performing a certain task t ∈ T and then we calculate the corresponding profit, Pt
m of

the platform and finally, we formulate PQ-Trade worker selection problem as a Multi-

Objective Non-Linear Programming (MONLP) problem.

3.3.2.1 Worker Utility

For each candidate worker m ∈ M and a certain task t ∈ T , we compute an integrated

utility metric, U t
m, which is a linear combination of three sub-metrics - UM , UD, and UQ
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due to its mobility, location and past sensing quality, respectively.

Calculation of UM : For a location-aware crowdsourcing system, assignment of a

task to a worker highly depends on the availability of the worker in the task’s Area of

Interest (AOI). Therefore, user’s velocity and direction of movement jointly determine

the available of the worker within the area. Thus, we introduce the sojourn of a worker,

L t
m, defined as the amount of time the worker m is expected to stay in the AOI. Higher

value of L t
m indicates availability of the worker for a longer duration, which is beneficial

for quality sensing.

The utility UM of worker m for performing task t based on its mobility pattern is

quantified as follows,

UM =


1− e(dtm−min(L t

m,Dt)) dtm < min(L t
m,Dt),

0 otherwise,

(3.2)

where, L m
t can be calculated using workers mobility information [65]. Note that, we

use similar approch of [65] which calculates the sojourn time of a mobile device within

the coverage area of a cloudlet; The difference is that, instead of the coverage area of a

cloudlet we consider the AOI of a task. Here, Dt is the delay-deadline of task t, defined

by an application; and, dtm is the task completion delay. Note that, the value of UM

ranges between 0 and 1 and the exponent function in Eq. 3.2 decreases its value sharply

when the task completion delay, dtm is close to min(L t
m,Dt).

Calculation of UD: Quality of sensing a task highly depends on the distance of

a worker from the center of it’s AOI for many applications including measurement of

temperature, light intensity, Wi-Fi signal strenth, etc. Further away a worker is from

the center of a task, less the sensing quality it can provide. Thus, we define a utility

function based on Eucledian distance, ||lm − lt||2 between the current location, lm of a
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worker m ∈M and the center location, lt of the task t ∈ T , as follows,

UD =


(1− ||lm−lt||2

rt
)
δ
||lm − lt||2 ≤ rt,

0 otherwise,

(3.3)

where, rt is the radius of task t’s AOI and δ is the distance factor. Now, combining UM

and UD, we define a joint utility, UMD due to current location as follows,

UMD = UM × UD. (3.4)

Note that, the Eq. 3.4 gives higher utility to a worker that stays longer within the

AOI of a task and is located closer to center of AOI.

Calculation of UQ: Alongside the worker utility due to current position and move-

ment, its historical sensing quality is also an important parameter to consider. To es-

timate sensing accuracy of a worker from its historical sensing quality, we use quality

indicator proposed in ABSee [37]. It helps us to discourage selfish nodes that demand

high payment for services. In PQ-Trade, the QoS management module determines the

sensing quality as the standard deviation of data qualities sensed by the workers. Assume

that, ψt
m

(k)
and ψt(k) denote the value of task t ∈ T obtained from worker m ∈ M and

estimated value of task t performed by the winners, respectively, in the kth task allocation

round. Now, we calculate the quality indicator, q
(k)
m of worker m ∈ M for performing

tasks T ′ ⊆ T in kth round as follows,

q(k)m =

√
1

|T ′|
×

∑
∀t∈T ′

(ψt
m

(k) − ψt(k))2, (3.5)

where, T ′ = {t : m has a winning bid for t}. ψt(k) can be estimated accurately using

truth discovery methods proposed in [53]. Now, qm is updated using EWMA as follows,

qm = γ × q(k)m + (1− γ)× q(k−1)
m , (3.6)

where, γ (0 ≤ γ ≤ 1) is the weight factor for the most recent value of qm. Note that,

qm > 0 and a smaller value indicates higher quality of sensed data. Initialy, platform sets
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qm = q0 for each worker m ∈ M and updates the value of qm using Eq. 3.6 after each

task allocation round based on the quality of data sensed by the workers. Note that, a

more accurate value of qm can be estimated after running a number of task allocation

rounds.

Now, PQ-Trade platform calculates the third utility, UQ based on qm as follows,

UQ = −2× (
1

1 + e−ϑqm
− 1). (3.7)

Here, UQ ∈ [1, 0] and ϑ is a scalling factor. By adjusting the value of ϑ, the shape

of UQ can be adaptive according to the application requirements. For a newly selected

worker (i.e., qm = q0), we recommend, q0 =
1
ϑ × ln(3) to set a fair utility (i.e., UQ = 0.5).

Calculation of U t
m: Now, we define a combined utility function U t

m, for selecting

the bid, Γt
m of a worker m for task t as follows,

U t
m = α× UMD + (1− α)× UQ. (3.8)

Note that, U t
m is a linear combination of worker utilities due to location and sensing

reputation, weighted by α (0 ≤ α ≤ 1). By tuning the value of α, the platform can

achieve different objectives according to application preferences.

3.3.2.2 Platform Profit

A platform tries to maximize its profit while providing quality sensed data services to

its customers. To calculate the profit of the platform for selecting a bid, Γt
m of a worker

m ∈M for a task t ∈ T , we calculate monetary value, Vtm, as follows,

Vtm = Vt ×
wt
m

Wt
, (3.9)

where, Vt is the value of task t to the platform.

Recall that the measurement processes for the parameters Vt, Wt and w
t
m have been

discussed in sections previous sections. Now, the profit of the platform, Pt
m is determined
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as,

Pt
m = Vtm − ctm, (3.10)

where, ctm is the claimed cost of a worker m ∈M for performing a task t ∈ T . Now, the

normalized profit, ρtm of the platform can be calculated as,

ρtm =
Pt
m

V max
, (3.11)

where, 0 ≤ ρtm ≤ 1 and V max = max
t∈T

Vt.

3.3.2.3 Objective Function

Note that, profit, Pt
m made by the platform for allocating task t ∈ T to worker m ∈ M

depends on worker’s claimed cost, ctm and monetary value, Vt of that task. Thus selecting

workers with higher utility values may end up with decreasing platform profit and vise-

versa. In this work, our goal is to make a trade-off between these two. That is, in

addition to maximize the platform profit while maintaining required quality of sensing

data values, we carry out boundary analysis both for the data quality and the platform

profit. The proposed PQ-Trade system is formulated as a Multi-Objective Non Linear

Programming (MONLP) problem as follows:

B′ = argmax
b∈P(B)

∑
∀Γt

m∈b

{ω × U t
m + (1− ω)× ρtm} (3.12)

s.t. ∑
∀Γt

m∈b

wt
m ≤ Wt, ∀t ∈ T (3.13)

|B′
∩

Bm| ≤ nmax
m , ∀Γt

m ∈ b (3.14)

UMD > 0, ∀Γt
m ∈ b,∀t ∈ T (3.15)

U t
m ≥ U t

th, ∀Γt
m ∈ b,∀t ∈ T (3.16)

ρtm ≥ ρtth, ∀Γt
m ∈ b,∀t ∈ T (3.17)
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Here, the weight parameter ω (0 ≤ ω ≤ 1) controls the objective of the optimization

function, i.e., setting ω = 1 makes the problem as a utility (i.e., data quality) maximiza-

tion problem and ω = 0 converts the problem into a profit maximization problem, while

the other values make the desired trade-off we want to achieve from the system.

The constraint (13) is the workload assignment constraint and it indicates that for

each task t ∈ T , workload offered by all selected workers, ∀m ∈ b must be less than or

equal to the total workload of that task. The constraint (14) is the maximum winning

bids constraint and it refers that, the total number of winning bids of a worker m ∈ b

must be less than or equal to nmax
m . The constraint (15) ensures that the workers outside

the task’s AOI or having remaining lifetime less then the completion delay of the task

can’t be selected. The constraint (16) refers that the total utility, U t
m achieved from

worker m ∈ b for task t ∈ T must be greater than or equal to some threshold, U t
th. The

constraint (17) indicates that each worker m ∈ b selected for task t ∈ T must have some

profit greater than or equal to ρtth. Note that, constraints (16) and (17) ensures the

marginal level of the utility and the profit, respectively.

Note that the worker selection problem in PQ-Trade, formulated in Eq. (3.12), is

a multi-objective non-linear programming (MONLP) problem. In the literature this

is known as classical Maximum Weight Subset Selection Problem that aims to select a

subset of elements from the universal set, S ⊂ U , satisfying certain properties so as to

maximize some objective function f(S). Similarly, in PQ-Trade, selecting a subset b from

the universe of discourse P(B), i.e., b ∈ P(B) that maximizes the objective function in

Eq. (3.12) satisfying constraints (11) to (17), is a Maximum Weight Subset Selection

Problem, which is a well known NP-hard problem [66]. So PQ-Trade worker selection

problem is NP-Hard and no solution can be found in polynomial time.
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3.3.3 Greedy Solutions

The optimal worker selection problem, presented in the previous section is proved to be

NP − hard. In a practical crowdsourcing application, thousands of users may co-exist

and bid for number of tasks at a time. Thus, even if the higher computing facilities are

available in cloud platform, no solutions can be found in polynomial time. To justify the

above statements we simulate the objective function of PQ-Trade in NEOS optimization

server (2x Intel Xeon E5-2698 @ 2.3GHz CPU and 92GB RAM) both for varying number

of sensing tasks and worker devices, and the result is shown in Fig. 3.4. The result

reveals that, on an average, several seconds are required to run PQ-Trade worker selection

algorithm for around 5 ∼ 6 number of tasks and 5 ∼ 7 number of workers. As the number

of tasks or workers increases it requires exponentially high execution time. The reason is

that, PQ-Trade system, generates subsets of the bids which increases as a power of total

number of bids. In this section, we develop two greedy solutions with different objectives

for worker selection problem which can select workers in polynomial time.
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(a) Execution time vs. number of sensing tasks (b) Execution time vs. number of workers

Figure 3.4: Impacts of number of sensing tasks and workers on execution time

At first, we develop a First-Fit Utility Maximization (FFU) algorithm that aims to

select each bid qtm ∈ B of worker m ∈ M for task t ∈ T so as to maximize its utility,

U t
m while keeping profit, Pt

m at a fixed level. The later one, Fast-Fit Profit Maximization
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(FFP) algorithm greedily maximizes platform’s profit while selecting workers offering

minimal utility values.

3.3.3.1 First-Fit Utility Maximization

In this strategy, for each task t ∈ T , the platform fixes a minimum profit target, Pt
min

and aims at maximizing the utility of each selected worker m ∈M. That is, the system

emphasizes here on increasing the sensing data quality.

Algorithm 1 summarizes the steps of First-Fit Utility Maximization. For each can-

didate bid q ∈ Bt, U t
m, Vtm and Pt

m are calculated (line no. 9) and B is sorted in the

decreasing order of U t
m. After that, each candidate bid, q ∈ B is choosen greedily and

added to the winning bid set, B′ if Pt
m is greater than or equal to Pt

min, t has unassigned

workload and the worker won permitted number of bids (line no. 15). This process

repeats until B is empty.

The complexity of Algorithm 1 is quite straightforward to follow. The statement 3 is

enclosed in a loop that iterates |M| times. The statement 6 is also enclosed in another

loop that iterates |T | times. The statement 9 is enclosed in a loop that iterates |B|

times and has the complexity of O(|T |× |M|) in the worst case. In statement 11, we use

quick sort having worst case complexity O(|T |2 × |M|2). The statements 13 ∼ 19 are

enclosed in a loop that iterates |B| times having worst case complexity of O(|T | × |M|).

The rest of the statements have constant unit time complexities. Therefore, the overall

computational complexity of the algorithm is O(|M|+ |T |+ |M| × |T |+ |M|2 × |T |2 +

|M| × |T |) ≈ O(|M|+ |T |+ |M|2 × |T |2) ≈ O(|M|2 × |T |2).

3.3.3.2 First-Fit Profit Maximization

In this strategy, the cloud platform aims at maximizing its profit while maintaining a

minimum quality of sensed data by the workers.

Algorithm 2 summarizes the steps of First-Fit Profit Maximization Algorithm. All
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Algorithm 1 First-Fit Utility Maximization Algorithm

INPUT: Set of bids of all workers, B ←
∪

∀m∈M
Bm

OUTPUT: Set of winning bids, B′

1: B′ ← ϕ

2: for all m ∈M do

3: nm ← 0

4: end for

5: for all t ∈ T do

6: wt ← 0, ct ← 0

7: end for

8: for all q ∈ B do

9: Calculate U t
m, Vtm and Pt

m using Eq. (3.8), (3.9) and (3.10), respectively

10: end for

11: Sort B in descending order of U t
m

12: while (B ̸= ϕ) do

13: q ← First element of B

14: if (Pt
m ≥ Pt

min && (Wt − wt) ≥ wt
m && nm < nmax

m && (Vt − ct) ≥ ctm) then

15: B′ ← B′∪ q

16: wt ← wt + wt
m, ct ← ct + ctm

17: nm ← nm + 1

18: end if

19: B ← B \ q

20: end while

21: return B′
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Algorithm 2 First-Fit Profit Maximization Algorithm

INPUT: Set of bids of all worker, B ←
∪

∀m∈M
Bm

OUTPUT: Set of winning bids, B′

1: B′ ← ϕ

2: for all m ∈M do

3: nm ← 0

4: end for

5: for all t ∈ T do

6: wt ← 0, ct ← 0

7: end for

8: for all q ∈ B do

9: Calculate U t
m, Vtm and Pt

m using Eq. (3.8), (3.9) and (3.10), respectively

10: end for

11: Sort B in descending order of Pt
m

12: while (B ̸= ϕ) do

13: q ← First element of B

14: if (U t
m ≥ U t

min && (Wt − wt) ≥ wt
m && nm < nmax

m && (Vt − ct) ≥ ctm) then

15: B′ ← B′∪ q

16: wt ← wt + wt
m, ct ← ct + ctm

17: nm ← nm + 1

18: end if

19: B ← B \ q

20: end while

21: return B′
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the statements are similar to algorithm 1 excepts, in line no. 11, B is sorted in the

decreasing order of Pt
m and, instead of checking minimum utility condition, it checks

for minimum profit condition (i.e., U t
m ≥ Umin) in line no. 14. The computational

complexity of Algorithm 2 is same as that of Algorithm 1.

3.3.4 Worker Payment Policy

We develop a payment policy for the workers won for performing different tasks. The

payment policy not only gives a share of the profit to the workers but also it penalizes

a worker that fails to provide required quality of data. Such a policy stimulates workers

to join the crowdsourcing system with good contribution. We define the payment P t
m of

a worker m ∈M for performing a task t ∈ T as follows,

P t
m =


ctm + φ qtm ≤ qtmax && Pt

m ≥ Pt
min,

ε× ctm qtm > qtmax,

ctm Otherwise,

(3.18)

where, qtmax is the maximum allowable standard deviation of sensing quality for task

t. In the case qtm ≤ qtmax and Pt
m ≥ Pt

max (i.e., platform makes more profit than expected

from the worker with high quality data) the worker is considered as a valuable one and

φ amount of extra profit is added to the claimed cost of the worker. On the other hand,

qtm > qtmax indicates poor quality of the sensed data, resulting in reduced the payment

of the worker by a factor of ε. Otherwise, the payment of the worker is simply equal to

its claim cost. Different platforms can adapt their own strategies for calculating reward

amount, φ and penalty factor, ε; we calculate φ using eq. 3.19 as follows,

φ = (Pt
m − Pt

min)× {1− e(q
t
m−qtmax)×θ1} (3.19)

.

To calculate penalty factor, ε we use simular equation of [36] as follows,

ε = e(q
t
min−qtm)×θ2 . (3.20)
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Note that, θ1 and θ2 in eq. 3.19 and eq. 3.20, respectively are two scaling factors

whose values can be adjusted to control the effect of sensing quality deviation. Now, we

develop a payment vector P for all the selected workers, following the above payment

policy, using Algorithm 3.

Algorithm 3 Determination of Payment Vector

INPUT: Set of winning bids, B′

OUTPUT: Payment vector, P

1: M′ ← {m : qtm ∈ B′}

2: for all m ∈M′ do

3: Pm ← 0

4: end for

5: for all q ∈ B′ do

6: Calculate ptm using Eq. (3.18)

7: Pm ←Pm + ptm

8: end for

9: return P

The complexity of Algorithm 3 is quite straight forward to follow. The statement 3 is

enclosed in a loop which iterates for |M′| times having the worst case complexity O(|M|).

Statements 6 ∼ 7 are enclosed in another loop which iterates for |B′| times having the

worst case complexity O(|T | × |M|). Other statements have constant time complexities.

Thus, the total complexity of Algorithm 3 is O(|M|+(|T |× |M|)) ≈ O(|M|× (|T |+1)).

3.4 Conclusion

In this chapter, we have presented the system model and design components of our

proposed PQ-Trade system. After that, we have given the work flow of our proposed

work on how the PQ-Trade platform takes optimal workload allocation decisions. In
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the next chapter, we show the experimental results of our PQ-Trade workload allocation

policy and compare the obtained results with some of the state-of-the-art works.



Chapter 4

Performance Evaluation

In the previous chapter, we have discussed on the formulation of the PQ-Trade worker

selection problem that selects the optimal workers balancing their utilities and platform

profit. In this chapter, we present the detail performance evaluation results of our pro-

posed PQ-Trade system and analyze its effectiveness by comparing it with state-of-the-art

workers.

4.1 Introduction

The actual quality of a research work can be judged by its performance in realistic envi-

ronment. In this chapter we describe how we evaluate the performance of our proposed

PQ-Trade system. We perform synthetic analyzing of our proposed system on differ-

ent simulation scenario. We analyze the performance of our proposed system based on

different metrics such as, platform profit, average utility, request service satisfaction,

etc. To realize the effectiveness of PQ-Trade system, we implement three versions of

our greedy solution - FFP, FFU and PQ-Trade using a commercial software MATLAB

[67] and compare their performances with two state-of-the-art mechanisms MSC [46] and

SACRM [36]. The PQ-Trade greedy solution sorts bids in the decreasing order of objec-

tive function decribed in Eq. 3.12. In the subsequent sections, we present the simulation

environment, performance metrics and simulation results.

51
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4.2 Simulation Environment

We assume that sensing tasks and worker devices are randomly distributed in a 1000 ×

1000m2 area. The arrivals of worker devices and sensing task requests are generated using

Poisson distribution. Each sensing task has a circular coverage area, divided into several

number of workloads and must be served within a delay deadline. The radius of coverage

area, total number of workloads and delay deadline of each task are chosen randomly

from 20-150m, 1-7, and 5-15s, respectively. The value (i.e., the monetary demand of the

sensing service) of each task is distributed over 5 -15 with random uniform distribution.

Each worker device can move at different velocities in random direction and bid for a

subset of tasks. The number of workloads of each task offered by a worker is taken from

1-7 randomly and worker claimed cost varies uniformly over 1 - 20. For evaluating and

updating quality of sensed data, we adopt similar philosophy of [36] where worker having

combined utility, U t
m < 0.3 submits poor sensing results with a high probability of (1 -

U t
m) and worker with U t

m ≥ 0.3 provides poor sensing results with probability 0.4 × (1 -

U t
m). All the simulation parameters are summarized in table 4.1. Each simulation was

run for 1000 seconds and graph data points are plotted for the average of the results from

50 simulation runs with different random seed values. We run all simulation experiments

on a machine having 2.8 GHz Intel CPU and 4GB memory.

4.3 Performance Metrics

We analyze the performance of the studied systems FFU, FFP, PQ-Trade, MSC [68] and

SACRM [36] on the following metrics.

� Profit of the platform: It is defined as the total amount of revenue received by the

platform after completion of all allocated workloads for all the tasks by the selected

worker devices.
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Table 4.1: Simulation Parameters

Parameter Value

Simulation area 1000 × 1000 m2

Arrival rate of sensing tasks 2 ∼ 8 tasks/sec

Arrival rate of worker devices 2 ∼ 8 workers/sec

Workloads of task 1 ∼ 7

Radius of task’s AOI 20 ∼ 150m

Task budget 5 ∼ 15 units

Worker claimed cost 1 ∼ 20 units

Task delay deadline 5 ∼ 15s

Task completion time 1 ∼ 20s

Worker mobility speed 4.5 ∼ 7km/h

Umin 0.3

Pmin 10%

α 0.6

ω 0.6

Simulation time 1000 Seconds
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� Average utility per worker: It is measured as the ratio of total utility achieved from

the selected workers to the total number of workers.

� Request service satisfaction: It is define as the ratio of total number of completed

workloads of all the tasks to total workloads submitted by the data requesters.

� Standard deviation of sensing quality: It is defined as the average standard devia-

tion of quality of sensed data received from the selected workers.

� Average payment per worker: It is measured as the ratio of total payments given

to the selected workers to the total number of workers.

� Execution time: It is defined as the total time required to run the worker selection

algorithm.

4.4 Simulation Results

In this section, we discuss on the results of performance evaluations for varying arrival

rates of tasks, arrival rates of worker devices, worker velocity and worker claimed cost.

We also study the impact of varying values of control parameter, ω, minimum profit

threshold, Umin and minimum utility threshold, Pmin.

4.4.1 Impact of Varying Task Arrival Rates

In general increasing the task arrival rate increases the profit of the platform, decreases

the utility of the selected workers and request service satisfaction. In this experiment, we

varied the task arrival rates between 2∼8 tasks/second. The arrival rate of the workers

is kept constant at 5 workers/second.

The graph of Fig. 4.1 states that the total profit of the platform increases with the

increasing task arrival rates in all the studied systems. This is because a higher profit

can be obtained by the cloud platform when more tasks are being crowdsourced to the
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Figure 4.1: Profit of the platform for varying task arrival rates

worker devices. However, our proposed FFP algorithm provides the highest profit as it is

designed to maximize the profit of the platform. The MSC [68] system makes more profit

than SACRM [36] and FFU system due to the selection of workers minimizing social cost

but can’t outperform FFP as minimum social cost couldn’t always ensure higher amount

of profit. Though FFU aims to maximize the utilities of the selected workers, it performs

better than SACRM because of maintaining the marginal profit. The SACRM system

doesn’t consider platform profit thus performs worst.

Average utility per worker device for varying task arrival rates is shown in Fig. 4.2.

The graphs depict the fact that, the average utility increases with the increasing task

arrival rates for all the studied systems. Such results are achieved by allocating more

work loads of different sensing tasks to the suitable worker devices. However, it reaches

a saturation point when task arrival rate crosses 7 tasks/sec. The obtained result clearly

reveals the fact that, the proposed FFU system achieved the highest utility from the

selected workers compared to other systems as it is designed to maximize the utility.
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Figure 4.2: Average utility for varying task arrival rates

Inspite of maximizing the profit of the platform, the proposed FFP outperforms MSC

and SACRM systems for maintaing minimal utility while selecting workers. The proposed

PQ-Trade (ω = 0.6) system performs in between FFU and FFP but closer to FFU. This

is because it gives more priority to worker utility than the profit of the platform.

In Fig. 4.3, we observe that, the request service satisfaction decreases with the

increasing task arrival rates and starts to fall rapidly after task arrival rate reaches

to 6 tasks/sec. This is caused by the fact that all the workers get allocated with the

maximum number of bids. All of our proposed systems give priority to the workers

with longer sojourn period within the AOI of a task and thus it outperforms MSC and

SACRM. It is interesting to observe that, FFP performs better than the proposed FFU

as it maintains the minimal utility requirement of the application. On the other hand,

while maximizing utility of the selected workers, FFU sometimes fail to ensure minimum

utility requirement for each of the workers. The MCS and SACRM systems neither

consider the sojourn period of the workers or maintain the minimum utility requirements.
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Moreover, both of those can’t handle the heterogeneous task requests simultaneously and

thus sensing resources of the workers remain unused which in turns decreases the request

service satisfaction.
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Figure 4.3: Request service satisfaction for varying task arrival rates

Standard deviation of sensing quality for varying task arrival rates for all the studied

systems are shown in Fig. 4.4. The experimental outcomes reveal that, the standard

deviation of sensing quality of the proposed systems are significantly lower than the

MSC and SACRM systems. This is because proposed systems select workers that are

probabilistically expected to provide accurate and high quality sensing results. The

proposed FFU focuses on utility of the selected workers and thus it provides better

sensing quality with least deviation compared to other systems. The proposed PQ-Trade

(ω = 0.6) performs better than FFP as it gives more priority to utility. The MSC

doesn’t consider any of the quality parameters while selecting the workers, offering the

worst results.

The average payment per worker device for successfully completing assigned tasks
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Figure 4.4: Standard deviation of sensing quality for varying task arrival rates
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Figure 4.5: Average payment per worker
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Figure 4.6: Execution time for varying task arrival rates

has been shown in Fig. 4.5. The graphs depict the fact that, the average payment of the

selected workers are higher in proposed FFP, FFU and PQ-Trade (ω = 0.6) compared to

MSC and SACRM systems. The reason behind this result is articulated by the fact that,

the proposed payment policy penalizes workers with poor sensing result at the same time

gives rewards for good contribution which could even pay a worker more than its claimed

cost if sufficient amount of profit is made from that worker. On the other hand, SACRM

only penalizes workers thus payment of each worker can never exceed its claimed cost.

In case of MCS rule of critical payment is followed as workers are paid according to their

marginal contribution and paid less than or equal to their claim cost.

The graphs of Fig. 4.6 depict that the average execution time of worker selection

algorithm increases in all the approaches with varying task arrival rates. The obtained

result clearly reveals that the proposed FFP, FFU and PQ-Trade (ω = 0.6) systems

outperform MSC and SACRM systems in average execution time of worker selection

algorithm. This is because proposed systems exploit a sorting based greedy algorithm
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which consider all the sensing task requests arrived within a scheduling interval. However,

SACRM adopts a dynamic programming solution and runs worker selection algorithm

whenever a new sensing request arrives to the system. Though MSC also exploits sorting

based greedy algorithm it runs selection algorithm for each of the task individually. That

is why both of MSC and SACRM systems experience higher average execution time.

4.4.2 Impact of Varying Worker Arrival Rates

Increasing arrival rates of worker devices, in general, facilitates the cloud platform in

selecting more suitable workers. As a result platform’s profit, worker utility and request

service satisfaction increases with the increasing worker arrival rates. In this experiment

we show the system performance for varying worker arrival rates, ranging from 2-8 work-

ers/second. The arrival rate of sensing tasks is fixed at 5 tasks/second for measuring

system efficiency.
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Figure 4.7: Profit of the platform for varying worker arrival rates

The graphs of Fig. 4.7 states that the total profit of the cloud platform increases with
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the increasing arrival rates of worker devices for all the studied system. This is caused by

the fact that, from more available workers, bids for a single task increases, facilitating the

platform to choose workers with additional profit. However, the rate of increase is slower

as the system becomes congested with a large number of worker devices. The results also

reveal that proposed FFP outperforms the other systems for the reason stated before.

On the other hand, proposed FFU sacrifices profit in order to maximize the utility of

selected workers.
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Figure 4.8: Average utility per worker for varying worker arrival rates

Average utility achieved from the selected worker devices for varying worker arrival

rates is shown in Fig. 4.8 that depicts that the average utility of the proposed system

increases with worker arrival rates and reaches to a saturation point. As the system be-

comes congested with a large number of worker devices, additional workers can contribute

less in the utility gain. The FFU outperforms other systems for its design principle stated

above. The SACRM system experience poor utility gain as it overlook worker’s mobility

and location information.
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Figure 4.9: Request service satisfaction for varying worker arrival rates

Fig. 4.9 states that the request service satisfaction increases with the increasing

worker arrival rates for all the studied system. However our proposed FFP, FFU and PQ-

Trade (ω = 0.6) outperform the MSC and SACRM system significantly. This is because

PQ-Trade worker selection algorithm consider worker’s sojourn time within the AOI of

the task and workers with higher sojourn time get selected. As a result, task completion

ratio increases significantly. It is an interesting observation that FFP performs better

than FFU. This is caused by the fact that FFP maintains a minimum utility level of the

application due to minimum utility constraint where FFU fails to ensure it in some cases.

As expected PQ-Trade (ω = 0.6) workers in between FFP and FFU. The rate of increase

in utility with increasing worker arrival rates is slower for all the studied systems as the

system gets saturated with sufficient workers.

Standard deviation of sensing qualities for varying worker arrival rates has been shown

in Fig. 4.10. It decreases in all of the proposed systems as the platform gets the oppor-

tunity to select the workers with higher utility from a large number of worker devices.
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Figure 4.10: Standard deviation of sensing quality for varying worker arrival rates

However, the proposed FFU system shows better performance as it gives priority to the

worker with higher utility. Moreover, the proposed FFP and PQ-Trade also gets benefit

for marginal profit constraint and profit-utility trade off, respectively. All of the proposed

systems outperform MSC and SACRM systems significantly for the reason stated before.
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Figure 4.11: Average payment per worker for varying worker arrival rates
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Figure 4.12: Execution time for varying worker arrival rates
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Fig. 4.11 depicts the fact that average payment of the selected worker is higher in the

proposed FFP, FFU, and PQ-Trade (ω = 0.6) systems compared to MCS and SACRM

systems. This is because of the proposed rewarding policy. From the graphs it is also

clear that proposed FFP outperforms FFU for the reason stated above.

The graphs of Fig. 4.12 show the execution time of worker selection algorithm with

varying worker arrival rates for all the studied systems. The the result reveals that execu-

tion time increases with the increasing worker arrival rates for all the systems. However,

proposed FFP, FFU and PQ-Trade (ω = 0.6) take significantly less time compared to

MSC and SACRM systems. This is caused by the fact that MSC and SACRM both

run worker selection algorithm each time a new task request arrives in the system. On

the other hand both of the proposed algorithms consider all the tasks arrived within a

task scheduling interval and exploit a sorting based greedy algorithm which significantly

reduce the execution time.

4.4.3 Impact of Varying Worker Velocities

As the velocity of a worker device increases, its sojourn time within a task’s AOI is

reduced and thus number of workers with required service time becomes insufficient. As

a result, platform’s profit, utility of the selected workers and request service satisfaction

are decreased with increasing velocity. In this section we show the system performance

for varying worker velocities ranging from 5-65 km/h. For this experiment the arrival

rates of sensing tasks and worker devices are fixed at 5 tasks/sec and 5 workers/sec

respectively.

Figure 4.13 depicts the fact that with the increasing worker velocity the profit of

the platform decrease for proposed systems. This is because with the increasing velocity

a worker can provide sensing service for a shorter duration. As a result, the worker’s

mobility based utility drops to zero for the workers whose task completion delay exceeds

worker’s sojourn time. Thus proposed FFU gets insufficient workers to complete sensing
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Figure 4.13: Profit of the platform for varying worker velocity
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Figure 4.14: Average utility per worker for varying worker velocity
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Figure 4.15: Request service satisfaction for varying worker velocity

tasks which in turns reduce the profit of the platform. For FFP the profit of the platform

also decreases for the marginal utility constraint.

As shown in Fig. 4.14 average utility achieved from the selected workers decreases

with the increasing worker velocity for all the studied system. This is caused by the

fact that with the increasing velocity workers remaining time in a task’s AOI decreases

which in terns decreases workers mobility based utility. However, proposed FFP, FFU

and PQ-Trade (ω = 0.6) still select workers with higher utility. FFU outperforms FFP

for the reason stated before.

The graphs of Fig. 4.15 depicts the fact that request service satisfaction decreases

with the increasing worker velocity for all the studied systems. This is because as sojourn

time of a worker decreases with the increasing worker velocity, the number of workers

with required service time become insufficient. As a result, most of the workloads of the

tasks remain unallocated which in turns decreases the request service satisfaction. How-

ever proposed systems outperforms MSC and SACRM systems as those selects workers
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Figure 4.16: Standard deviation of sensing quality per worker

considering their sojourn time within the AOI of a task.

The standard deviation of sensing quality of the selected workers with varying worker

velocity is shown in Fig. 4.16 With the increasing velocity workers with higher utility

values becomes unavailable and less workers are selected. As a result, standard deviation

of sensing quality increases. However, proposed systems are benefited by the utility aware

worker selection polity.

4.4.4 Impact of Varying Worker Claimed Costs

We also evaluate the system performance with increasing worker claimed costs. In this

experiment the arrival rate of sensing tasks and workers are fixed at 5 tasks/sec and 5

workers/sec, respectively.

Fig. 4.17 states that the profit of the platform decreases with the increasing worker

claimed cost. The reason is quite straight forward.
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Figure 4.17: Profit of the platform for varying worker claim cost
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Figure 4.18: Average utility per worker for varying worker claim cost
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Figure 4.19: Request service satisfaction for varying worker claim cost
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Figure 4.20: Standard deviation of sensing quality
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The graphs in Fig. 4.18 depicts the fact that the average utility of the selected workers

decreases as the claimed cost of the workers increases. This is because all of the proposed

systems select less workers as their claimed cost exceeds the value of the tasks.

Fig. 4.19 states that request service satisfaction also decreases with the increasing

claimed cost. This is caused by the fact stated above. With the increasing claimed cost

less number of workers with higher utility get selected. Thus increases the standard

deviation of the sensing quality which is shown in Fig. 4.20.

4.4.5 Impact of Varying Values of Control Parameter, ω

We have varied the value of ω and assessed the performances on platform profit and

worker utility achieved by PQ-Trade system. The value of ω controls the level of impor-

tance the platform gives on profit and utility. For this experiment, arrival rates of sensing

tasks and workers are kept constant at 5 tasks/sec and 5 workers/sec, respectively. From

Fig. 4.21(a) and Fig. 4.21(b) it is clear that, platform profit and average utility of the

workers is inversely related. PQ-Trade platform maximizes its profit when ω = 0. Simi-

larly the average utility of the selected workers is maximized when ω = 1. However, other

values of ω facilitate the system to make a trade off between profit and utility. Thus the

value of ω is set by the platform following the requirement of the application.
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4.4.6 Impact of Marginal Profit Threshold, Pmin

We have observed the impact of varying values of Pmin in FFU system. From the graphs

of Fig. 4.22(a) and Fig. 4.22(b) it is clear that, with increasing values of Pmin, instead of

maximizing utility of the selected workers FFU system maximizes profit and minimizes

utility which is opposite to its design principle. Thus, an appropriate value should be

chosen for Pmin by the platform to maintain its minimum profit requirements while

preserving the objectives of FFU systems.
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Figure 4.22: Impact of varying values of Pmin

4.4.7 Impact of Marginal Utility Threshold, Umin

We have also studied the impact of varying values of Umin in FFP system. The graphs of

Fig. 4.23(a) and Fig. 4.23(b) depicts the fact that, with increasing values of Umin, FFP

maximizes average utility achieved from the selected workers and minimizes profit which

is against its objectives. Thus, an appropriate value of Umin should be set by the platform

such a way to maintain the minimum utility requirements of the MCS application while

prioritizing the design goal of FFP.
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Figure 4.23: Impact of varying values of Umin

4.5 Summary

The previous analysis shows that, our proposed PQ-Trade model performs better than

MSC and SACRM in terms of platform profit, sensing quality, request service satisfaction

and standard deviation of sensing quality. We have also compared the system perfor-

mance in terms of average payment of the workers and execution time of worker selection

algorithm. In every case we have found that,PQ-Trade system outperforms the MSC and

SACRM system. Thus we can conclude that PQ-Trade system provide better solution

of worker selection problem while balancing worker utility and platform profit and open

a new window for further developments.



Chapter 5

Conclusion

In this chapter, we summarize the research results presented in this thesis and state few

directions for future works.

5.1 Summary of Research

The key observation behind modeling the proposed PQ-Trade system was that, provid-

ing quality sensing services requires selection of high utility workers. At the same time,

MCS model should be profit-aware for the platform to sustain in the long run. Thus,

distribution of sensing responsibilities among the workers maintaining desired data qual-

ity and make a reasonable profit is a challenging one for the MCS platform. Although

a number of works have been done in the literature, none of them consider the provider

profit and the utility of the worker devices jointly. In this thesis, we addressed the prob-

lem of trade-off between the platform profit and worker utility. The key philosophy of

our work was that while maximizing the profit or utility, the other one should be kept

in a marginal level. Moreover, the payment policy should be adaptive according the

to sensing data assessment report. To achieve these objectives, we defined the system

components of the crowd platform and demonstrated their functionalities. To make the

trade-off stated above, we formulated a multi-objective non-liner programming problem

model with necessary constraints. The MONLP problem has been proved to be NP-hard

and practical evaluation done in NEOS server suggests that, feasible solution can’t be

74



5.2 DISCUSSION 75

found in real time. As a result, we developed greedy first-fit solutions to select an optimal

set of workers from the available workers in the MCS systems. Finally, we proposed our

payment policy for the selected workers.

We have evaluated our proposed model in a distributed computation environment

using MATLAB and compared the performances of our proposed system with state-

of-the-art works MCS and SACRM. The most influential component of our proposed

model was user utility model (i.e., worker mobility prediction module, quality assessment

module, etc.). As depicted in simulation results, our proposed system outperforms the

existing workers in terms of platform profit, worker utility and request service satisfaction.

The proposed FFP system outperforms one of literature works in terms of profit as

higher as 23.82 %, whereas, proposed FFU system achieved average utility gain which

is approximately 2.29 times greater than the existing works. Our proposed system also

achieved 1.62 times more request service satisfaction than the existing policies. Proposed

PQ-Trade system (ω = 0.6) makes 17.21% of more profit and achieved 2.22 times more

utility gain. Here, profit loss and decrease in utility gain is caused due to the trade-off

between profit and utility (e.g., ω = 0.6 gives 60 % weight to worker utility).

5.2 Discussion

Getting in MCS research area was not an easy task. As MCS is an emerging area, our

first challenge was to find a promising sector to work in MCS. We have studied MCS

related research documents on various topics and found the worker selection and workload

allocation problem to be most interesting. The primary hurdle we faced was analyzing

the existing system and find out their drawbacks where we can put our contribution.

However, the main challenge was to develop an alternate model that solves the existing

problems and also compatible with MCS system.

After we developed our proposed system (PQ-Trade), the next challenge was to imple-
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ment PQ-Trade and compare its performance with MCS and SACRM. Hence we needed

to implement the proposed system using any simulation tool. We give a exhaustive search

in the literature to find a suitable simulation tool for simulating dynamic MCS system.

We hardy find any simulation tool dedicated for MCS system simulation. We chose

MATLAB as most of literature works use it to implement their mechanism. During im-

plementation phase, one of the primary challenges was to develop a realistic simulation

environment. After successful implementation of PQ-Trade, we extensively evaluated

their performance and at the end, the work is now presentable.

5.3 Future Plan

Despite the fact that this thesis gives an exhaustive study on MCS from different view-

points, there are still some open issues and several research directions that can be sought

after to improve the performance of proposed PQ-Trade. Making a trade off in between

profit and quality, considering the presence of multiple MCS systems before the worker

devices would be an interesting future work. Another interesting problem includes the

consideration of the number of workers for number of participant aware MCS system.

Trade off is also required in this case as the higher participation results in decreasing

platform profit. However, making reasonable balance in between platform profit and

number of participants will be another scope of contribution.
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Appendix A

Computation of L m
t

In PQ-Trade, we assume that a worker device, m ∈M can move at different velocities in

random direction. To model this mobility characteristics of a worker we adopt smooth

random mobility model [64]. According to smooth random mobility model, the velocity

of a worker at different time slots are correlated, i.e., the current velocity of a worker

m ∈ M depends on its previous n number of velocities. Thus using smooth random

mobility model, for each worker m ∈ M, PQ-Trade worker mobility prediction module

estimates expected velocity, Êm(v) and expected direction, Êm(Ø) from the velocity and

direction of previous n number of slots.

Now we can draw a line in the direction of a worker m ∈M as follows,

y − ym = χ× (x− xm), (A.1)

where, (x, y) is any co-linear point on the line, lm(xm, ym) is the current geographical

location of that worker and χ = tanø is the slope of the line. Note that, we assume each

task t ∈ T has a circular AOI centered at (xt, yt) having radius of rt. Thus, AOI of a

task t ∈ T can be represented as,

(x− xt)2 + (y − yt)2 = (rt)
2. (A.2)

By solving Eq. A.2 and Eq. A.1 we get two intersection points A(x′, y′), and B(x′′, y′′)

as shown in Fig. A.1, which are co-linear with (xm, ym). From these two points we take

the point A(x′, y′), in the direction of that worker. After crossing this point the worker

m ∈ M would leave the AOI of task t ∈ T thus can’t provide further sensing services.
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Figure A.1: Calculation of worker’s sojourn time within a task’s AOI

Now, the predicted time duration a worker m ∈ M stays within the AOI of task t ∈ T

termed as worker sojourn time, L m
t and can be calculated as follows,

L m
t =

||A− lm||2
Êm(v)

, (A.3)

where, ||A− lm||2 =
√
(x′ − xt)2 + (y′ − yt)2 is the Eucledian distance between

(x′, y′) and (xt, yt).



Appendix B

List of Acronyms

AOI Area of Interest

FFP First-Fit Profit

FFU First-Fit Utility

GPS Global Positioning System

ILP Integer Linear Programming

LP Linear Programming

MONLP Multi-Objective Non-Linear Programming

MCS Mobile Crowdsourcing

89



Appendix C

List of Notations

T Set of tasks advertised by the platform P

lt Location of a task t ∈ T

rt Radius of task t’s AOI

Dt Delay deadline of task t ∈ T

Wt Total workload of task t ∈ T

Vt Value of task t ∈ T

M Set of available worker devices

lm Current location of worker m ∈M

Bm Set of bids sent by a worker m ∈M

wt
m Offered workload of task t from a worker m ∈M

ctm Claimed cost of worker m for a task t ∈ T

dtm Task completion delay for task t ∈ T , m ∈M

B′ Set of winning bids

L t
m Sojourn time of worker m in task t’s AOI

UM , UD, UQ Workers’ utility for mobility, location and

past sensing quality, respectively

U t
m Combined utility of worker m for task t

Vtm Monetary value of workers’ utility

Pt
m, ρ

t
m Platform total and normalized profit

for allocating task t to worker m
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Sensor Networks (IJDSN), vol. 11, no. 5, May 13, 2015.

International Conference Papers

2. ——–, ——–, ——–, “Tradeoffs Between Sensing Quality and Energy Efficiency in

Context Monitoring Applications,” 2016 International Conference on Networking

Systems and Security (NSysS), IEEE, pp. 1–7, January 2016.
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