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• Distributed problem solving model

• Outsources tasks to the crowd
– Online community

– Easy for human, difficult for computer

• Innovation

• Problem solving

• Efficiency
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Crowdsourcing
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Smartphone
– ubiquitous

– seamless Internet connectivity

(e.g.,Wi-Fi, cellular, etc.)

– multi sensing capabilities
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Mobile Crowdsourcing
Smartphone

Tablet

77 %

51 %

% of adults in USA (Nov 2016) [12]

Mixing smartphone based mobile technologies and 

crowdsourcing offers a new paradigm called Mobile 

Crowdsourcing (MCS)

[12] “Mobile technology fact sheet,” Available online: http://www.pewinternet.org/

fact-sheets/mobile technology-fact-sheet, accessed on 17 November 2017.
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Players in MCS
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An Example of MCS System
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• Traffic monitoring and smart navigation

– Nericel[3], Vtrack[4]

• Environmental monitoring 

– PIER[2], EarPhone[5]

• Social networking 

– crowdSMILE[28]

• Disaster Reporting

– Project Jagriti[25]

Some MCS Applications
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• Decomposing service request into subtasks

• Considering workers spatial and temporal 

availability

• Controlling sensing quality

• Making sufficient profit from the MCS system

• Trade-off issues (e.g., profit quality trade-off)

• Data quality assessment

• Lucrative payment policy for the workers

• Managing past sensing reputation

Challenges in MCS
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• How to maximize quality of sensed data while 

fixing a profit margin of the platform?

• How to maximize profit of a platform while 

keeping the required quality of sensed data for 

MCS applications? 

• How to make a reasonable trade-off in between 

the above two performance metrics?

Research Questions
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State-of-the-Art-Works
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[ 39] H. Shah-Mansouri and V. W. S. Wong, “Profit maximization in mobile 

crowdsourcing:  A truthful auction mechanism,” in 2015 IEEE International 

Conference on Communications (ICC), June 2015, pp. 3216–3221.

PROMOT Mechanism [39]

Greedily selects 

worker with a aim 

to maximize 

platform profit

Provide satisfactory 

reward to the 

winners

Do not consider 

worker’s location or 

mobility

Tasks are 

considered atomic

Do not consider 

worker past sensing 

reputation

11



[ 36] J. Ren, Y. Zhang, K. Zhang, and X. S. Shen, “Sacrm: Social aware 

crowdsourcing with reputation management in mobile sensing,” Computer 

Communications, vol. 65, pp. 55 – 65, 2015, mobile Ubiquitous Sensing from Social 

Network Viewpoint.

SACRM System [36]

Profit of the 

platform is not 

considered

Do not consider 

worker mobility 

or location

Can’t handle 

heterogeneous 

task request

Report assessment 

and rewarding 

scheme

Consider worker’s 

social attribute, 

task completion 

delay and 

reputation

12



[46 ] Z. Duan, M. Yan, Z. Cai, X. Wang, M. Han, and Y. Li, “Truthful incentive 

mechanisms for social cost minimization in mobile crowdsourcing systems,” 

Sensors, vol. 16, no. 4, 2016.

MSC System [46]

Consider  Two 

patterns : 

continuous and 

Discontinuous

Selects workers 

with a  aim to 

minimize social 

cost

Worker location, 

mobility or past 

sensing reputation 

are not considered

Can’t handle 

heterogeneous task 

request
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Thesis Contributions

• Designed a workload allocation framework  for MCS 
platform named PQ-Trade system.

• Defined worker utility based on its mobility, current 
location and past sensing reputations.

• Allocation problem is formulated as MONLP problem
• Proven to be NP-Hard

• Developed  two greedy solutions
• First fit utility maximization

• First fit profit maximization

• A payment policy for the selected worker

• Performance evaluation of the algorithms and 
comparison with existing techniques
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System Model

Sensing tasks set,

Each task is define by 

the tuple,

Set of workers, Each bid is defined by 

the tuple,
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Interaction among Entities

16

16

Workload allocation 

Perform  tasks

Report assessment and 

payment



Computational Model of 

PQ – Trade Platform

Interact with Data 

Requesters

Core Computational 

Modules

Interact with 

Worker Devices

17



Receiving Sensing Task Request

•Location 

•Type

•Deadline

•Budget

18

Request Receiver Workload Computation



Workload Computation
•Location 

•Type

•Deadline

•Budget

•Workload
•Location 

•Type

•Deadline

•Budget

•Workload

Task Pool

• Each task is divided into 
subtasks of uniform size. 

• Total number of subtasks 
is defined as workload of 
that task

19

Request Receiver Workload Computation

Task volume Size of uniform 

subtask• For heterogeneous service request subtask 
definition can be more complex

- Introduces another research problem [62]

[62] S. Chen, M. Liu, and X. Chen, “A truthful double auction for two-sided 

heterogeneous mobile crowdsensing markets,” Computer Communications, vol. 81, 

no. Complete, pp. 31–42, 2016.



Calculation of Worker Sojourn 

Time in a Task’s AOI
• Worker move at random 

direction with  random velocity

• Smooth Random mobility mode 
to predict expected velocity,

and sojourn time,       [65] 

20

Worker Mobility 

Predictor

[65] M. H. G. F. Asma Enayet, Md. Abdur Razzaque, “A mobility-aware optimal 

resource allocation architecture for big data task execution on mobile cloud in smart 

cities,”IEEE Communications Magazine, 2017.



Utility of a Worker

Mobility Based Utility

Distance Based Utility

Past Sensing Quality Based Utility

21



• is the completion delay of 
task t by worker m

• is the delay deadline of task t

• is the sojourn time of worker 
m in the AOI of task t

Mobility Based Utility Calculation
22

Worker Device 

Selection

Worker Mobility 

Prediction

[36] J. Ren, Y. Zhang, K. Zhang, and X. S. Shen, “Sacrm: Social aware

crowdsourcing with reputation management in mobile sensing,” Computer

Communications, vol. 65, pp. 55 – 65, 2015.



• Further away the user is, less 
sensing quality it can provide. 
– Temperature, Wi-Fi signal 

Strength, etc.

• Can be modeled as:

Distance factor

Distance Based Utility Calculation
23

Worker Device 

Selection

Worker Mobility 

Prediction



Combines       and      to define location  based utility

Location Based Utility Calculation

Worker with longer remaining lifetime and closer  

to the task center gives higher utility
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Worker Device 

Selection

Worker Mobility 

Prediction



Past Quality Based Utility Calculation

Standard deviation of 

sensed data 

Quality Indicator, 

For a new worker Scaling factor 

25

Reputation

Database

Worker Device 

Selection

[37] B. Song, H. Shah-Mansouri, and V. W. S. Wong, “Quality of sensing aware budget

feasible mechanism for mobile crowdsensing,” IEEE Transactions on Wireless

Communications, vol. 16, no. 6, pp. 3619–3631, June 2017.



Combined Utility Calculation

• Now we calculate the combined utility of a worker

m for performing task t as,

weighting factor
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Profit of the Platform

• Profit of the Cloud Platform can be calculated as:

Worker claimed cost Monetary value of the task,,

• Now we calculate normalized profit as:
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MONLP Problem Formulation

where,

= 1

= 0

0 <     < 1

Utility maximization problem

Profit maximization problem

Makes desired trade-off
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Constraints

Workload constraint

Maximum bid constraint

Worker availability constraint

Marginal utility constraint

Marginal profit constraint
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Workload Allocation Problem 

is NP - Hard 

• MONLP selects a subset b  from P(B), i.e., 

b ∈ P(B) that maximizes the objective 

function satisfying given constraints.

– Same as maximum weight subset selection 

problem

• NP-hard

30



Execution Time

NEOS Optimization server (2x Intel

Xeon E5-2698 @ 2.3GHz CPU and 92GB RAM
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First-Fit Greedy Solutions

– First-Fit Utility Maximization (FFU): aims at
maximizing utility while keeps profit in a
marginal level.

– First-Fit Profit Maximization (FFP): profit is
maximized while utility is kept in a marginal
level.

32



FFP Maximization Algorithm
33



FFU Maximization Algorithm
34



Worker Payment Policy

Weight factors

Penalty factor Reward point

35

QoS and Reputation 

Management 

Worker Device 

Selection

Payment 

Management
Payment Provider



Worker Payment Determination 

Algorithm
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Data 

Repository

Updating Quality Records

Calculate SD of 

sensed data from 

the truth value

Truth value can be 

determined using 

methods proposed in 

[53]

Update  qm using 

EWMA

[53] Y. Li, Q. Li, J. Gao, L. Su, B. Zhao, W. Fan, and J. Han, “Conflicts to harmony: A

framework for resolving conflicts in heterogeneous data by truth discovery,” IEEE

Transactions on Knowledge and Data Engineering, vol. 28, no. 8, pp. 1986–1999,Aug 2016.
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QoS and Reputation 

Management 
Reputation

Database



Performance Evaluation

• We carry out performance analysis of the
proposed algorithms – PQ-Trade (ω = 0.6), FFP
and FFU using MATLAB [67]

• Present comparative results with state-of-the-
art works SACRM [36] and MSC [46]

38

[36] J. Ren, Y. Zhang, K. Zhang, and X. S. Shen, “Sacrm: Social aware

crowdsourcing with reputation management in mobile sensing,” Computer

Communications, vol. 65, pp. 55 – 65, 2015.

[46] Z. Duan, M. Yan, Z. Cai, X. Wang, M. Han, and Y. Li, “Truthful incentive 

mechanisms for social cost minimization in mobile crowdsourcing systems,” Sensors,

vol. 16, no. 4, 2016.

We hardly found any simulation tool for MCS system simulation



Simulation Environment

Sensing task

Worker device

Arrival of sensing task requests and workers 

follow poison distribution [69]

Tasks and Workers distribution over 

simulation are is uniform random

[69] Y. Zhu, Q. Zhang, H. Zhu, J. Yu, J. Cao and L. M. Ni, "Towards Truthful

Mechanisms for Mobile Crowdsourcing with Dynamic Smartphones," 2014 IEEE 34th

International Conference on Distributed Computing Systems, Madrid, 2014, pp. 11-20.

39



Simulation Parameters
40



• Profit of the platform

– Total amount of revenue received by the platform 

• Average utility per worker

– Ratio of total utility received from selected workers 
to total number of workers

• Request service satisfaction

– Ratio of total number of completed workloads to 
total number of requested workloads

• Standard deviation of sensing quality

– Average SD of quality of sensed data received from 
the selected workers

• Average payment per worker

– Ratio of total payment of selected workers to total 
number of workers

• Execution time

– Total time required to run worker selection and task 
allocation algorithms

Simulation Metrics
41



Impact of Varying Task Arrival 

Rates (1/3) 

Arrival rate of workers 

5 workers/sec

Highest 

profit 

Sacrifices profit for 

utility

Worker mobility, location, past 

sensing quality

Sacrifices utility for 

profit

Gives more weight to utility
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Impact of Varying Task Arrival 

Rates (2/3)

Arrival rate of workers 

5 workers/sec

Worker sojourn time, location, Past 

sensing quality, marginal utility 

High quality data with less 

standard deviation
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Impact of Varying Task Arrival 

Rates (3/3)

Arrival rate of workers 

5 workers/sec

Adaptive rewarding 

policy

44

Runs in several milliseconds



Impact of Varying Worker Arrival 

Rates (1/3)

Rate of increase is slower as the system 

gets saturated with large # of workers

Utility reaches to a 

saturation point

Arrival rate of tasks 

5 tasks/sec
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Impact of Varying Worker Arrival 

Rates (2/3)

Arrival rate of workers 

5 workers/sec

More high quality workers 

get selected

Workload allocation 

opportunity increases
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Impact of Varying Worker Arrival 

Rates (3/3)

Arrival rate of workers 

5 workers/sec
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Impact of Varying Worker 

Velocities (1/2)

Arrival rate of tasks  5 tasks/sec

Arrival rate of workers  5 workers/sec

48

Unavailability of workers due to decreasing sojourn time 



Impact of Varying Worker 

Velocities (2/2)

Unavailability of workers results in selecting poor 

quality workers 
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Arrival rate of tasks  5 tasks/sec

Arrival rate of workers  5 workers/sec



Impact of Varying Claimed Costs 

(1/2)

Arrival rate of tasks  5 tasks/sec

Arrival rate of workers  5 workers/sec

System fails to maintain minimum profit
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Impact of Varying Claimed Costs 

(2/2)

Arrival rate of tasks  5 tasks/sec

Arrival rate of workers  5 workers/sec
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Impact of Varying ω

Platform gives more weight to worker utility than its 

profit
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Impact of Varying Umin

Instead of profit, platform maximizes worker utility 

violating design principle
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Impact of Varying Pmin

Instead of utility, platform maximizes its profit 

violating design principle
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Summery of the Thesis 

(1/2)

• Designed workload allocation framework for 

location aware MCS system.

• Worker spacial and temporal availability 

aware utility model

• A MONLP optimization formulation for 

allocating workload to maintain a reasonable 

trade-off between quality and profit, 

proven to NP-hard.
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Summery of the Thesis 

(2/2)
• Greedy solutions to avoid the complexity – FFP, 

FFU and PQ-Trade (ω)

• FFP achieves profit as higher as 23.8%

• FFU achieves average utility gain 2.29x

• System’s service satisfaction is 1.6x

• PQ-Trade (ω = 0.6) achieves profit as high as 
17.21% and utility gain 2.22x

• Success of the system highly depends on the 
system parameter setup
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