Multiconstrained QoS Aware MAC Protocol for Cluster-based Cognitive Radio Sensor Networks

B. Sc. 4th year (Hons.) project presentation

Presented by:

 $((c_1))$

Mir Mehedi Ahsan Pritom Exam roll: Curzon Hall, no. : 20 Sujan Sarker Exam roll: Curzon Hall, no. : 55

Supervised by

Dr. Md. Abdur Razzaque Associate Professor

Department of Computer Science and Engineering, University of Dhaka

Overview

- Cognitive Radio Technology
- Cognitive Radio Sensor Network
- Advantages
- Research Challenges
- Project Contribution
- State-of-the-Art Models
- Network Model & Assumptions
- Proposed MQ-MAC Protocol
- Performance Evaluation
- Conclusion
- References

 $((\cdot, \cdot))$

Cognitive Radio Technology

- Cognitive Radio is a form of wireless communication in which a transceiver intelligently detect which communication channels are in use and which are not and instantly move into vacant channels avoiding the occupied one.
- □ This optimizes the usage of spectrum while minimizes interference with others.

Cognitive Radio Technology

Dynamic Spectrum Access(DSA) is all about Cognitive Radio.

 $((\cdot, \cdot))$

Advantages of CR

Efficient Utilization of Unused Licensed Band.

Reduction of Spectrum Shortage Problem

Cognitive Radio Sensor Network

Basically a WSN integrated with CR capability is known as **CRSN**.

-Which is a new era of wireless communication e.g. In Warfield monitoring, medical center, environmental monitoring, Temperature monitoring etc. can be done more efficiently with CRSN.

rking research group

 $((\cdot,\cdot))$

Research Challenges

Research Challenges

- Changing Spectrum Environment & spectrum behavior
- Selecting Best available channel set for channel sensing and selection.
- Protecting the transmission of primary users (PUs)
- Ensuring reliability during data transmission

Project Contribution

Project Contributions

- A multiconstrained QoS aware MAC protocol (MQ-MAC) for cluster-based CRSN
- Traffic prioritization for heterogeneous data
- QoS aware dynamic superframe structure
- An intelligent **fusion operation** over the cooperative sensing result
- A new GTS allocation algorithm

 $((\cdot,\cdot))$

- A new dynamic data channel assignment algorithm
- A new backup channel assignment algorithm
- Finally, The performance evaluations in NS-3 [23] show that the proposed MQ-MAC achieves better performances.

Recent Works

State-of-the-art Solutions

The most recent works on CRSN: KoN-MAC[20]-

 Basically optimizes the channel selection and sensing mechanism by selecting best K(<=N) channels from N available channels for sensing.

Fig.: Superframe structure of KoN-MAC

Comparison

Metrics	IEEE 802.15.4 [32]	KoN-MAC [20]	MQ-MAC
Traffic	No	No	Yes
Prioritization			
Ontime	Low	Medium	Very high
Reachability			
Energy Efficiency	No	Yes	Yes
SU Blocking Rate	NA	Medium	Low

Table: Comparison between different state-of-the-art protocols with our protocol

CRSN Network Model

Fig. : The network model for CRSN

Network Model & Assumptions

- A Cluster based network.
- Cluster formation is done using LEACH[2] protocol.
- A Multihop network.
- Multichannel access is considered.

Traffic Classification

Traffic Class	Traffic Class Value (Tc)	Both delay and reliability-
Real time Reliable(RR)	0	constrained packets
Real time non- Reliable(RnR)	1	Delay constrained but not reliability constrained packets
Non-Real time Reliable(nRR)	2	Reliability constrained but
Best Effort(BE)	3	not delay constrained packets

neither delay constrained nor reliability constrained, normal packets

Proposed MQ-MAC Protocol

MQ-MAC Protocol Design

- Data node Prioritization.
- A mechanism for selecting best channels for best possible nodes.
- Assignment of GTS for prioritized data for ensuring better QoS.
- Channel & backup channel assignment for DTP.
- Backup channel switching mechanism.

Subset Selection and Channel Sensing Mechanism

• a subset of K from N number of channels will be selected for channel sensing and thus reducing the energy consumption.

• Channel sensing is done on these K channels(called the polled-channel set, S_{K}) to find the best available set of channels C_{b} . ($|C_{b}| \leq K$).

• This is the main contribution of KoN-MAC protocol and here we begin our work.

 $((\cdot, \gamma))$

States and Weights of channels

States	Description	Channel Weight	Will be increased by
Idle	SU finds the channel available	Widle	Widle if sensed Idle
Busy	SU finds PU using the channel	Wbusy	Will be decreased by W _{busy} if sensed
Active	SU uses the channel to transmit	Wact	Busy
	data successfully		
Collision	PU or other SU appears while SU	Wcol	Will be increased by
	is transmitting data		Wactive if Active
Here each will I	, There will be an initial weight for channel Win and always the weight be in the following range, $0 \le W \le 1$	W	Will be decreased by W _{collision} if Collision

etworking research group

Super frame Structure

	Co	mplete Sup Interva	perframe al			
						_
CSCSP		SACAP		DTP	SP	

Cooperative Sensing & Channel Selection Phase(CSCSP)

Slot Allocation & Channel Assigning Phase (SACAP)

Data Transmission Phase (DTP)

Cooperative Sensing and Channel Selection Phase (CSCSP)

Slot Allocation and Channel Assignment Phase (SACAP)

- GTS Slot Allocation algorithm
- Data Channel Assignment algorithm
- Backup Channel Assignment algorithm
- Single slot Channel Assignment Algorithm
- Multi slot Channel Assignment Algorithm

 $((\cdot, \gamma))$

GTS Slot Allocation

Algorithm 1 GTS allocation algorithm

INPUT: A_G , the set of GTS allocation request received during CSCSP **OUTPUT**: A_s the set of allocated slot for all requests

- 1. while A_G is not empty do
- 2. if request is from RR then
- insert request in RR_{req}
- remove request from A_G
- 5. else
- if request is from RnR then
- insert request in RnR_{req}
- remove request from A_G
- 9. else
- if request is from nRR then
- insert request in nRR_{req}
- remove request from A_G
- end if
- 14. end if
- end if
- 16. end while
- Sort RR_{req}, RnR_{req} and nRR_{req} according to the increasing order of remaining packet lifetime
- 18. Merge RR_{req}, RnR_{req} and nRR_{req} into A_s
- 19. *i*=0
- for Each element of A_s do
- Allocate ith available GTS to A_s[i]
- 22. end for

 $((\cdot, \cdot))$

Nid	1	Nid	1	Nid	1
Tc	RR	Тс	RR	Тс	RR
Lt	1233	Lt	1233	Lt	1233

Nid	1	Nid	1								
Tc	RR	Тс	RR								
Lt	1233	Lt	1233								
				Nid	1	Nid	1				
				Tc	RR	Tc	RR				
				Lt	1233	Lt	1233				
		Nid	1					Nid	1	Nid	1
		Tc	RR	Nid	1			Tc	RR	Tc	RR
		Lt	1233	Tc	RR	Nid	1	Lt	1233	Lt	1233
				Lt	1233	Tc	RR				
						Lt	1233	Nid	1		
								Tc	RR		
								Lt	1233		

 Nid
 1

 Tc
 RR
 Nid
 1

 Lt
 1233
 Tc
 RR

 Lt
 Lt
 1233
 1233

green networking research group

 $((\cdot,\cdot))$

Nid	1	Nid	1	Nid	1												
Тс	RR	Тс	RR	Тс	RR												
Lt	1233	Lt	1233	Lt	1233												
						Nid	1	Nid	1								
						Tc	RR	Тс	RR								
						Lt	1233	Lt	1233								
										Nid	1	Nid	1				
										Tc	RR	Тс	RR				
										Lt	1233	Lt	1233				
														Nid	1	Nid	1
														Тс	RR	Тс	RR
														Lt	1233	Lt	1233

Dynamic Channel Assignment

Let, Cb is the set of best available channels

we will calculate the mean and standard deviation of the channel weights of Cb as : $\sum_{i=1}^{n} WT_i$

$$\mu = \frac{\sum_{i=1}^{n} W T_i}{n}$$
$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (WT_i - \mu)^2}{n}}$$

CASE 1: $\mu > T_{up}$ AND $\sigma \leq \sigma_{max}$

Channels with high probability of being free, uniformed.

CASE 2: $\mu \leq T_{up}$ AND $\sigma \leq \sigma_{max}$

Channels with moderate probability of being free and are almost same in nature.

CASE 3: $\mu \leq T_{up}$ AND $\sigma > \sigma_{max}$

 $((\cdot, \cdot))$

orking research group

If the channel weights are not uniformed and contain both high and medium weights.

Dynamic Channel Assignment Approach

```
Algorithm 2 Dynamic channel assignment approach
 1. calculate \mu_{wt} using Eq. 3.4

 calcualte σ<sub>wt</sub> using Eq. 3.5

 3. if CASE 1 then
      put all the channels in BL
 4.
 5. else
      if CASE 2 then
 6.
         put all the channels in ML
 7.
 8.
      else
         if CASE 3 then
 9.
           for Each channel i in C_b do
10.
             if WT_i > \mu + \sigma AND WT_i \le 1 then
11.
12.
                put channel i into BL
13.
              else
                if WT_i > \mu - \sigma AND WT_i \le \mu + \sigma then
14.
                  put channel i into ML
15.
16.
                end if
17.
              end if
18.
           end for
19.
         end if
20.
      end if

    end if

22. Sort BL in decreasing order of channel weights

    Sort ML in decreasing order of channel weights

24. if |BL| > 0 then
      Run Algorithm 3
25.
26. end if

    if A<sub>s</sub> contains slot with unassigned channel then

      Run Algorithm 4
28.
29. end if

    if A<sub>S</sub> still contains slots with unassigned channel then

      Go to step 26
31.
32. end if
```

 $((\cdot, \cdot))$

networkir

Multi Slot Channel Assignment Algorithm

Algorithm 3 MultiSlot channel assignment algorithm

INPUT: BL, the set of best available channels; A_s the set of allocated slot for all requests

OUTPUT: A_c , assigned channel set

 $((\mathbf{r}))$

```
    k ← index of unassigned slot

 2. i \leftarrow 0
 3. while K \neq |A_s| do
      ns = WT_i \times W_{factor}
 4.
       if fractional part of ns < \eta then
 5.
 6.
         floor (ns)
 7.
       else
 8.
         if fractional part of ns \ge \eta then
 9.
            ceiling (ns)
10.
         end if
       end if
11.
12.
      j \leftarrow 0
       while j \leq ns AND K \leq |A_s| do
13.
14.
         assign ch_i of BL to slot S_k
         k \leftarrow k + 1
15.
         i \leftarrow i + 1
16.
      end while
17.
      i \leftarrow i + 1
18.
       if i > |BL| AND |ML| == Empty AND K \leq |A_s| then
19.
20.
         i \leftarrow 0
21.
       else
22.
         Return
23.
       end if
24. end while
```

Single Slot Channel Assignment Algorithm

Algorithm 4 SingleSlot channel assignment algorithm

INPUT: ML, the set of moderate channels; A_s the set of allocated slots for all requests

OUTPUT: A_c , assigned channel set

```
1. i \leftarrow 0
```

2. $j \leftarrow$ first index of unassigned channel slot

 $\{NU \text{ denotes number of unassigned channel slots }\}$

- 3. if $|ML| \ge NU$ then
- for Each unassigned slot S_j in A_s do
- assign ch_i to S_j
- 6. $i \leftarrow i + 1$
- 7. $j \leftarrow j + 1$
- 8. end for

else

- 10. **if** |ML| < NU **then**
- for Each ch_i in ML do
- 12. assign ch_i to S_j
- 13. $i \leftarrow i + 1$
- 14. $j \leftarrow j + 1$
- end for
- end if

17. end if

 $((\cdot, \cdot))$

Backup Channel Assignment Algorithm

Algorithm 5 Backup channel assignment algorithm

INPUT: *BL*, best available channel list; *ML*, moderate channel list; AC_G , the set of allocated channels for each slot in GTS; AC_{BE} , the set of allocated channels for best effort traffic

OUTPUT: B_G , set of assigned backup channels for GTS; B_B , set of assigned backup channels for BE traffic

- 1. $A \leftarrow BL \cup ML$ {Channels in BL and ML are merged into A}
- 2. for $i \leftarrow 1$ to $|AC_G|$ do
- 3. $k \leftarrow i$ th channel in AC_G
- j ← index of channel k in A
- 5. if j == |A| then
- assign A₁ to B_{Gi}
- else
- assign A_{j+1} to B_{Gi}
- 9. end if
- 10. $i \leftarrow i+1$
- 11. end for
- 12. for $i \leftarrow 1$ to $|AC_{BE}|$ do
- 13. $k \leftarrow i^{th}$ channel in AC_{BE}
- 14. $j \leftarrow \text{index of channel } k \text{ in } A$
- 15. if j == |A| then
- 16. assign A_1 to B_{Bi}
- else
- 18. assign A_{j+1} to B_{Bi}
- end if

 $((\cdot, \cdot))$

- 20. $i \leftarrow i+1$
- end for

networkin

An Example Scenario: Finding BL and ML

Here, .53 < mean - SD , so channel 9 is omitted from Cbest

An Example Scenario: Assigning Channels and Backup channels to GTS Slots

Slot no	1	2	3	4	5	6	7	8
Node	RR1	RR2	RnR1	RnR2	RnR3	nRR1	nRR2	nRR3
Ch								
Bch								

 Chi
 7

 WAi
 .834

٨٨١	chi	1	2	9
	WAi	.722	.716	.628

Slot no	1	2	3	4	5	6	7	8
Node	RR1	RR2	RnR1	RnR2	RnR3	nRR1	nRR2	nRR3
Ch								
Bch								

Wfactor = 3 ns = WAi * Wfactor = 2.5 = 3

AA1	chi	1	2	9
	WAi	.722	.716	.628

Slot no	1	2	3	4	5	6	7	8
Node	RR1	RR2	RnR1	RnR2	RnR3	nRR1	nRR2	nRR3
Ch	7	7	7					
Bch	1	1	1					

Wfactor = 3 ns = WAi * Wfactor = 2.5 = 3

ML	chi	1	2	9
	WAi	.722	.716	.628

Slot no	1	2	3	4	5	6	7	8
Node	RR1	RR2	RnR1	RnR2	RnR3	nRR1	nRR2	nRR3
Ch	7	7	7					
Bch	1	1	1					

No more channel in BL!!!

And there are Unassigned GTS slots Remaining Slots will be assigned channel from ML

 chi
 1
 2
 9

 WAi
 .722
 .716
 .628

Slot no	1	2	3	4	5	6	7	8
Node	RR1	RR2	RnR1	RnR2	RnR3	nRR1	nRR 2	nRR3
Ch	7	7	7	1	2	9		
Bch	1	1	1	2	9	7		

there are still Unassigned GTS slots Remaining Slots will be assigned channels from BL again

ML	chi	1	2	9
	WAi	.722	.716	.628

BL

Slot no	1	2	3	4	5	6	7	8
Node	RR1	RR2	RnR1	RnR2	RnR3	nRR1	nRR2	nRR3
Ch	7	7	7	1	2	9	7	7
Bch	1	1	1	2	9	7	1	1

All slots are assigned channels.

Data Transmission Phase

DTP distributed into two parts:

- GTS slots
- PCAP

 $((\cdot, \gamma))$

Data Transmission Phase: GTS

 all the sensor nodes with RR, RnR and nRR types of packets transmit data in their own assigned GTS slots with their assigned channels.

Data Transmission Phase: PCAP

• The best effort traffic transmit data using a random back-off value for transmission,

 $T_{randomback-off} = [0, 2^t]$

Where, t can be calculated as,

$$t = \frac{T_{rem}}{T_{in}} * f$$

Here, Trem is the remaining packet lifetime, Tin is the initial packet lifetime and **f** is a dynamic multiplying factor.

Backup Channel Switching Technique in GTS Slots

Fig.: Backup switching mechanism for GTS

Sleeping phase

- CH will be in inactive state with all other sensor nodes.
- If a longer sleeping phase is ensured then it eventually ensures energy efficiency.

Performance Evaluation

Simulation Parameters

Parameter	Value			
Simulation area	$1000\mathrm{m} \times 1000\mathrm{m}$			
Number of sensor nodes	$10 \sim 250$			
Deployment type	Uniform random			
Transmitting radius	200 m			
Back-off mechanism	CSMA/CA			
Number of Channels	10			
Channel data rate	1mbps			
Time for one channel sense	4ms			
Superframe period	1 s			
Number of slots in a superframe	128			
Slot duration	7.68ms			
CBR packet size	64Bytes			
MAC layer model	adhocWifiMAC			
Physical layer model	YansWifiPhy Model			
Energy in channel sense	23.56mJ			
Energy in receive mode	23.56mJ			
Energy in transmit mode	18.6mJ			
Initial energy of each node	100 Joule			
Queue length	50			
Simulation time	500 seconds			

 $((\cdot, \cdot))$

MQ-MAC Parameters

Parameter	Value
η	0.5
α	0.3
W_{factor}	3
μ_{up}	.8
σ_{max}	.1
f	3
K	5

Performance Metrics

- Average Packet Delivery Delay
- Ontime Reachability
- □ SU Blocking Rate
- □ LC Usage Probability
- Protocol Operation Overhead
- □ Average Energy Consumption

Average Packet Delivery Delay

With different number of nodes

 $((\cdot, \cdot))$

etworking research group

With varying traffic load

Ontime Reachability

With different number of nodes

 $((\cdot, \cdot))$

etworking research group

With varying traffic load

SU Blocking Rate

With different number of nodes

 $((\cdot, \cdot))$

etworking research group

With varying traffic load

LC Usage Probability

Protocol Operation Overhead

Average Energy Consumed

Conclusion

References

[1] G. P. Joshi, S. Y. Nam, and S. W. Kim, Cognitive radio wireless sensor networks: Applications, challenges and research trends," *Sensors, vol. 13, no. 9, pp. 11196-11228, 2013.*

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, A survey on sensor networks,"

Communications Magazine, IEEE, vol. 40, no. 8, pp. 102-114, Aug 2002.

[3] S. Haykin, Cognitive radio: brain-empowered wireless communications," Selected Areas in Communications, IEEE Journal on, vol. 23, no. 2, pp. 201-220, Feb 2005.

[4] Future directions in cognitive radio network research," NSF Workshop Report, Mar 2009.

[5] Spectrum policy task force report," Federal Communications Commission, Nov 2002,

washington, D.C. 20554, Tech. Rep. 02-135.

 $((\mathbf{r})$

etworking research group

[6] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, Next generation dynamic spectrum access cognitive radio wireless networks: A survey," *COMPUTER NETWORKS JOURNAL (ELSEVIER, vol. 50, pp. 2127-2159, 2006.*

[7] H. Z. J. Zhao and G. Yang, Distributed coordination in dynamic spectrum allocation networks," *IEEE DySPAN, pp. 259-268, Nov 2005.*

[8] H.-H. C. C. Li, P. Wang and M. Guizani, A cluster based on demand multi-channel mac protocol for wireless multimedia sensor networks," in *IEEE Int. Conf. Communications ICC*, 2008, pp. 2371-2376.

[9] O. Boyinbode, H. Le, A. Mbogho, M. Takizawa, and R. Poliah, A survey on clustering algorithms for wireless sensor networks," in *Network-Based Information Systems (NBiS), 2010 13th International Conference on, Sep 2010, pp. 358-364.*

[10] N. Panahi, A. Payandeh, H. Rohi, and M. Haghighi, Adaptation of leach routing protocol to cognitive radio sensor networks," in *Telecommunications (IST)*, 2012 Sixth International Symposium on, Nov 2012, pp. 541-547.

[11] I. H. K. I. F. Akyildiz, Wireless sensor and actor networks: Research challenges,"*Ad Hoc Networks Journal (Elsevier), vol. 2, no. 4, pp. 351-367, Oct 2004.*

References

- [12] X. L. S. Byun, I. Balasingham, Dynamic spectrum allocation in wireless cognitive sensor networks: Improving fairness and energy efficiency," *IEEE VTC 2008*, pp.1-5, Sep 2008.
- [13] S. H. S. G. Zhou, J. A. Stankovic, Crowded spectrum in wireless sensor networks," *Third Workshop on Embedded Networked Sensors (EmNets 2006)*, 2006.
- [14] O. B. A. E. Gurses, Multimedia communication in wireless sensor networks," Annals of Telecommunications, vol. 60, no. 7-8, pp. 799-827, Jul 2005.
- [15] J. K. A. K. M. Azad, A framework for collaborative multi class heterogeneous wireless sensor networks," *IEEE ICC*, 2008, pp. 4396-4401, May 2008.
- [16] L. H. A. Correiaz, E. E. Oliveirax, D. F. Macedox, P. M. Moura, A. A. Loureirox, and J. S. Silvaz, A framework for cognitive radio wireless sensor networks," *IEEE*, 2012.
- [17] K. R. C. Ian F. Akyildiz, Tommaso Melodia, A survey on wireless multimedia sensor networks," *Computer Networks, vol. 51, no. 4, pp. 921-960, Mar 2007.*
- [18] N. F. Suleiman Zubair and M. B. A. bazeed, A proposed network management protocol for cognitive radio sensor networks," *1st IEEE International Symposium on Telecommunication Technologies*, 2012.
- [19] D. M. A. Razzaque, Qos provisioning in wireless sensor networks: For location aware networks," 2010.
- [20] Y. Xu, C. Wu, C. He, and L. Jiang, A cluster-based energy efficient mac protocol for multi-hop cognitive radio sensor networks," in *IEEE GLOBECOM*, 2012, pp. 537-542.
- [21] S. Feng and D. Zhao, Supporting real-time cbr traffic in a cognitive radio sensor network," in WCNC, 2010, pp. 1-6.
- [22] Z. Liang, S. Feng, D. Zhao, and X. S. Shen, Delay performance analysis for supporting real-time traffic in a cognitive radio sensor network," *IEEE Transactions on Wireless Communications, vol. 10, no. 1, pp. 325-335, 2011.*
- [23] The network simulator NS-3," http://www.nsnam.org/, Accessed on 20 Jan 2014.
- [24] J. A. Han, W. S. Jeon, and D. G. Jeong, Energy{efficient channel management scheme for cognitive radio sensor networks," Vehicular Technology, IEEE Transactions on, vol. 60, no. 4, pp. 1905-1910, May 2011.

 $((\cdot, \cdot))$

References

- [25] H. Su and X. Zhang, Energy-efficient spectrum sensing for cognitive radio networks," in ICC, 2010
- [26] S. Gao, L. Qian, and D. R. Vaman, Distributed energy efficient spectrum access in wireless cognitive radio sensor networks," in *WCNC*, 2008, pp. 1442-1447.
- [27] S. Izumi, K. Tsuruda, T. Takeuchi, H. Lee, H. Kawaguchi, and M. Yoshimoto, A low-power multi resolution spectrum sensing (mrss) architecture for a wireless sensor
- network with cognitive radio," in Sensor Technologies and Applications (SENSOR-COMM), 2010 Fourth International Conference on, Jul 2010, pp. 39-44.
- [28] S. Maleki, A. Pandharipande, and G. Leus, Energy-efficient distributed spectrum sensing for cognitive sensor networks," *Sensors Journal, IEEE, vol. 11, no. 3, pp.* 565-573, Mar 2011.
- [29] W. Xia, S. Wang, W. Liu, and W. Chen, Cluster-based energy efficient cooperative spectrum sensing in cognitive radios," in Wireless Communications, Networking and Mobile Computing, 2009. WiCom '09. 5th International Conference on, Sep 2009, pp. 1-4.
- [30] I. Anjum, N. Alam, M. A. Razzaque, M. M. Hassan, and A. Alamri, Traffic priority and load adaptive mac protocol for qos provisioning in body sensor networks." *International Journal of Distributed Sensor Networks (IJDSN)*, 2013.
- [31] T. R. Park, T. H. Kim, J. Y. Choi, S. Choi, and W. H. Kwon, Throughput and energy consumption analysis of ieee 802.15.4 slotted csma/ca," *Electronics Letters*, vol. 41, no. 18, pp. 1017-1019, 2005.
- [32] Wireless medium access control (mac) and physical layer (phy) specications for low-rate wireless personal area networks (wpans)," *IEEE std 802.15.4, 2006*.
- [33] H. Su and X. Zhang, CREAM-MAC: An efficient cognitive radio-enabled multichannel MAC protocol for wireless networks," in *Proc. International Symposium on a World of Wireless, Mobile and Multimedia Networks WoWMoM 2008, Jun. 2008*, pp. 1-8.

[34] J. S. Pathmasuntharam, A. Das, and A. K. Gupta, Primary channel assignment based MAC (PCAM) - a multi-channel MAC protocol for multi-hop wireless networks," in Wireless Communications and
 Networking Conference, 2004. WCNC. 2004 IEEE, vol. 2, 2004, pp. 1110-1115 Vol.2.

 $((\cdot, \cdot))$

Thank You Question???

